Пример #1
0
 def test_read_shapefile_to_dataframe(self):
     spatial_rdd = ShapefileReader.readToGeometryRDD(
         self.spark.sparkContext, shape_file_input_location)
     spatial_rdd.analyze()
     logging.info(spatial_rdd.fieldNames)
     df = Adapter.toDf(spatial_rdd, self.spark)
     df.show()
Пример #2
0
    def test_read_mixed_wkt_geometries_into_spatial_rdd(self):
        df = self.spark.read.format("csv").\
            option("delimiter", "\t").\
            option("header", "false").load(mixed_wkt_geometry_input_location)

        df.show()
        df.createOrReplaceTempView("inputtable")
        spatial_df = self.spark.sql(
            "select ST_GeomFromWKT(inputtable._c0) as usacounty from inputtable"
        )
        spatial_df.show()
        spatial_df.printSchema()
        spatial_rdd = Adapter.toSpatialRdd(spatial_df)
        spatial_rdd.analyze()
        Adapter.toDf(spatial_rdd, self.spark).show()
        assert (Adapter.toDf(spatial_rdd, self.spark).columns.__len__() == 1)
        Adapter.toDf(spatial_rdd, self.spark).show()
Пример #3
0
    def test_read_csv_point_into_spatial_rdd(self):
        df = self.spark.read.\
            format("csv").\
            option("delimiter", "\t").\
            option("header", "false").\
            load(area_lm_point_input_location)

        df.show()
        df.createOrReplaceTempView("inputtable")

        spatial_df = self.spark.sql(
            "select ST_PointFromText(inputtable._c0,\",\") as arealandmark from inputtable"
        )
        spatial_df.show()
        spatial_df.printSchema()

        spatial_rdd = Adapter.toSpatialRdd(spatial_df, "arealandmark")
        spatial_rdd.analyze()
        Adapter.toDf(spatial_rdd, self.spark).show()
Пример #4
0
    def test_read_csv_point_into_spatial_rdd_by_passing_coordinates(self):
        df = self.spark.read.format("csv").\
            option("delimiter", ",").\
            option("header", "false").\
            load(area_lm_point_input_location)

        df.show()
        df.createOrReplaceTempView("inputtable")

        spatial_df = self.spark.sql(
            "select ST_Point(cast(inputtable._c0 as Decimal(24,20)),cast(inputtable._c1 as Decimal(24,20))) as arealandmark from inputtable"
        )

        spatial_df.show()
        spatial_df.printSchema()
        spatial_rdd = SpatialRDD(self.spark.sparkContext)
        spatial_rdd.rawJvmSpatialRDD = Adapter.toRdd(spatial_df)
        spatial_rdd.analyze()
        assert (Adapter.toDf(spatial_rdd, self.spark).columns.__len__() == 1)
        Adapter.toDf(spatial_rdd, self.spark).show()
Пример #5
0
    def test_geojson_to_dataframe(self):
        spatial_rdd = PolygonRDD(self.spark.sparkContext,
                                 geojson_input_location,
                                 FileDataSplitter.GEOJSON, True)

        spatial_rdd.analyze()

        df = Adapter.toDf(spatial_rdd, self.spark).\
            withColumn("geometry", expr("ST_GeomFromWKT(geometry)"))
        df.show()
        assert (df.columns[1] == "STATEFP")
Пример #6
0
 def test_load_id_column_data_check(self):
     spatial_rdd = PolygonRDD(self.spark.sparkContext,
                              geojson_id_input_location,
                              FileDataSplitter.GEOJSON, True)
     spatial_rdd.analyze()
     df = Adapter.toDf(spatial_rdd, self.spark)
     df.show()
     try:
         assert df.columns.__len__() == 3
     except AssertionError:
         assert df.columns.__len__() == 4
     assert df.count() == 1
Пример #7
0
    def test_convert_spatial_join_result_to_dataframe(self):
        polygon_wkt_df = self.spark.read.format("csv").option(
            "delimiter",
            "\t").option("header",
                         "false").load(mixed_wkt_geometry_input_location)
        polygon_wkt_df.createOrReplaceTempView("polygontable")

        polygon_df = self.spark.sql(
            "select ST_GeomFromWKT(polygontable._c0) as usacounty from polygontable"
        )
        polygon_rdd = Adapter.toSpatialRdd(polygon_df, "usacounty")

        polygon_rdd.analyze()

        point_csv_df = self.spark.read.format("csv").option(
            "delimiter",
            ",").option("header", "false").load(area_lm_point_input_location)
        point_csv_df.createOrReplaceTempView("pointtable")

        point_df = self.spark.sql(
            "select ST_Point(cast(pointtable._c0 as Decimal(24,20)),cast(pointtable._c1 as Decimal(24,20))) as arealandmark from pointtable"
        )

        point_rdd = Adapter.toSpatialRdd(point_df, "arealandmark")
        point_rdd.analyze()

        point_rdd.spatialPartitioning(GridType.QUADTREE)
        polygon_rdd.spatialPartitioning(point_rdd.getPartitioner())

        point_rdd.buildIndex(IndexType.QUADTREE, True)

        join_result_point_rdd = JoinQuery.\
            SpatialJoinQueryFlat(point_rdd, polygon_rdd, True, True)

        join_result_df = Adapter.toDf(join_result_point_rdd, self.spark)
        join_result_df.show()

        join_result_df2 = Adapter.toDf(join_result_point_rdd, ["abc", "def"],
                                       list(), self.spark)
        join_result_df2.show()
Пример #8
0
    def test_to_df_srdd_fn_spark(self):
        spatial_rdd = PolygonRDD(self.spark.sparkContext,
                                 geojson_input_location,
                                 FileDataSplitter.GEOJSON, True)
        spatial_rdd.analyze()
        assert spatial_rdd.approximateTotalCount == 1001

        spatial_columns = [
            "state_id", "county_id", "tract_id", "bg_id", "fips", "fips_short",
            "bg_nr", "type", "code1", "code2"
        ]
        spatial_df = Adapter.toDf(spatial_rdd, spatial_columns, self.spark)

        spatial_df.show()

        assert spatial_df.columns == ["geometry", *spatial_columns]
        assert spatial_df.count() == 1001