def analyzeStimulus(stimulusName): data = getData.getRawData(dataset, stimulusName) trials = [] trialNum = len(data[0]) / numberOfFramesPerTrial for x in range(trialNum): trials.append( map( lambda neuron: neuron[x * numberOfFramesPerTrial: (x + 1) * numberOfFramesPerTrial], data)) for t in range(len(trials)): analyzeTrial(stimulusName, trials[t], t)
Config.read(rawDataDirectory + 'analysis.config') number_of_shuffles = int(Config.get("analysis","number_of_shuffles_for_correlation_analysis")) def listdir_nohidden(path): for f in os.listdir(path): if not f.startswith('.'): if not f.endswith('p'): yield f #get number of neurons originalFiles=map(lambda x: x.rpartition('.')[0],listdir_nohidden(rawDataDirectory + 'stimuliData')) originalData=getData.getRawData(dataset, originalFiles[0]) number_of_neurons=len(originalData) stimuliNames = map(lambda x: x.rpartition('.')[0], listdir_nohidden(outputDirectory + 'mergedExportingN')) #generates all of the combinations of two different neurons neuronCombinations=list(itertools.combinations(range(number_of_neurons),2)) def getOutputData(location): f = open(location+'.txt', 'r') data=[] for line in f: data.append(line)
#gets directory of raw data and where output should go rawDataDirectory = '../datasets/' + dataset + '/' outputDirectory = '../analyzedDatasets/' + dataset + '/' def listdir_nohidden(path): for f in os.listdir(path): if not f.startswith('.'): if not f.endswith('p'): yield f #CAN USE THE RAW DATA FOR RAW CORRELATION TO DISTANCE IN ANOTHER ANALYSIS stimuliNames = map(lambda x: x.rpartition('.')[0], listdir_nohidden(rawDataDirectory + 'stimuliData')) rawData = getData.getRawData(dataset, stimuliNames[0]) #get number of neurons number_of_neurons = len(rawData) def getOutputData(location): f = open(outputDirectory + 'exportingN/' + location + '.txt', 'r') data = [] for line in f: data.append(line) data = map(lambda x: map(lambda y: float(y.strip()), x.strip().split(',')), data) return data
rawDataDirectory = '../datasets/' + dataset + '/' outputDirectory = '../analyzedDatasets/' + dataset + '/' Config = ConfigParser.ConfigParser() Config.read(rawDataDirectory + 'analysis.config') def listdir_nohidden(path): for f in os.listdir(path): if not f.startswith('.'): if not f.endswith('p'): yield f analysisOptions = Config.options("analysis") #generate list of settings analysisSettings = map( lambda option: option + ":" + Config.get('analysis', option), analysisOptions) #add number of neurons files = map(lambda x: x.rpartition('.')[0], listdir_nohidden(rawDataDirectory + 'stimuliData')) data = getData.getRawData(dataset, files[0]) analysisSettings.append('number_of_neurons:' + str(len(data))) #write file f = open(outputDirectory + "mathematicaConfig.txt", "w") for option in analysisSettings: f.write(option + '\n') f.close()