Пример #1
0
def predict(netWork, DS, preData):
    trainer = BackpropTrainer(netWork, DS, verbose=True, learningrate=0.01)
    #maxEpochs 即需要的最大收敛迭代次数
    trainer.trainUntilConvergence(maxEpochs=1000)
    #获取预测结果
    preValue = n.activate(preData)
    #设置预测值
    if preValue > 0:
        v = 1
    else:
        v = -1
    #将预测结果保存到数据库中
    g.save(v, time)
Пример #2
0
def predict(netWork,DS,preData):
	trainer = BackpropTrainer(netWork,DS,verbose = True,learningrate = 0.01)
	#maxEpochs 即需要的最大收敛迭代次数
	trainer.trainUntilConvergence(maxEpochs = 1000)
	#获取预测结果
	preValue = n.activate(preData)
	#设置预测值
	if preValue > 0:
		v = 1
	else:
		v = -1
	#将预测结果保存到数据库中
	g.save(v,time)
Пример #3
0
	result = {}
	client = client_factory('CAISO')

	for day in dayList:
		temp = getData.get_daily_data(year, month, day, client)
		if firstIteration:
			firstIteration = False
			for category in temp:
				result[category] = []
		# Add one more day in the final result
		result = getData.concatenate_day(result, temp)
		time.sleep(1)
	 
	# Save to csv
	path = os.path.join(os.path.dirname(__file__), 'csv_result', str(year) + '-' + str(month) + '.csv')
	getData.write_data_as_csv(result, path)

	# Plot data
	plt.figure(figsize=(20, 20), dpi=80)
	nbPlot = 100 * (len(result) - 1) + 10
	for category in result:
	    if not category == 'time':
	        nbPlot += 1
	        plt.subplot(nbPlot)
	        plt.plot(result['time'], result[category], label=category)
	        plt.xlabel('Time')
	        plt.ylabel('Power (MW)')
	        plt.legend()
	path = os.path.join(os.path.dirname(__file__), 'graph_result', str(year) + '-' + str(month))
	getData.save(path, ext='png', close=True, verbose=True)