Пример #1
0
from sklearn.ensemble import AdaBoostClassifier
from getData import getdata, evaluate, MCC, Get_f1_score, Get_Accuracy, Get_Precision_score, Get_Recall
clf = AdaBoostClassifier()
address = ''
x_train, y_train, x_test, y_test = getdata(address)
clf.fit(x_train, y_train)
y_predict = clf.predict(x_test)
accuracy = Get_Accuracy(y_test, y_predict)
accuracy = round(accuracy, 3)
precision = Get_Precision_score(y_test, y_predict)
precision = round(precision, 3)
recall = Get_Recall(y_test, y_predict)
recall = round(recall, 3)
f1_score = Get_f1_score(y_test, y_predict)
f1_score = round(f1_score, 3)
mcc = MCC(y_test, y_predict)
mcc = round(mcc, 3)
print('\n')
evaluate(y_test, y_predict)
print("Precision = ", precision)
print("Accuracy_Score = ", accuracy)
print("F1-Score  = ", f1_score)
print("MCC = ", mcc)
Пример #2
0
def IFS(address, importence_rank):
    x_train, y_train, x_test, y_test = getdata(address)
    for i in range(len(importence_rank)):
        y_test = []
        y_train = []
        flag = importence_rank[i]
        fileList = os.listdir(address + "\\train\positive")
        flag_train = 0
        for name in fileList:
            x_train[flag_train].append(
                np.load(address + "\\train\positive\\" + name)[flag])
            y_train.append(1)
            flag_train += 1
        fileList = os.listdir(address + "\\train\\negitive")
        for name in fileList:
            x_train[flag_train].append(
                np.load(address + "\\train\\negitive\\" + name)[flag])
            y_train.append(0)
            flag_train += 1
        fileList = os.listdir(address + "\\test\positive")
        flag_test = 0
        for name in fileList:
            x_test[flag_test].append(
                np.load(address + "\\test\positive\\" + name)[flag])
            y_test.append(1)
            flag_test += 1
        fileList = os.listdir(address + "\\test\\negitive")
        for name in fileList:
            x_test[flag_test].append(
                np.load(address + "\\test\\negitive\\" + name)[flag])
            flag_test += 1
            y_test.append(0)
        kf = KFold(n_splits=10)
        kf.get_n_splits(x_train)
        accuracy_ten = 0
        precision_ten = 0
        recall_ten = 0
        f1_score_ten = 0
        mcc_ten = 0
        sen_ten = 0
        spe_ten = 0
        x2_train, y2_train = shuffle(x_train, y_train, random_state=0)
        for train_index, test_index in kf.split(x_train):
            x1_train = []
            y1_train = []
            x1_test = []
            y1_test = []
            for i in range(len(train_index)):
                x1_train.append(x2_train[train_index[i]])
                y1_train.append(y2_train[train_index[i]])
            for i in range(len(test_index)):
                x1_test.append(x2_train[test_index[i]])
                y1_test.append(y2_train[test_index[i]])
            x1_train = np.array(x1_train)
            y1_train = np.array(y1_train)
            x1_test = np.array(x1_test)
            y1_test = np.array(y1_test)
            clf = XGBClassifier()
            clf.fit(x1_train, y1_train)
            y_predict = clf.predict(x1_test)
            accuracy = Get_Accuracy(y1_test, y_predict)
            accuracy_ten += accuracy
            precision = Get_Precision_score(y1_test, y_predict)
            precision_ten += precision
            recall = Get_Recall(y1_test, y_predict)
            recall_ten += recall
            f1_score = Get_f1_score(y1_test, y_predict)
            f1_score_ten += f1_score
            mcc = MCC(y1_test, y_predict)
            mcc_ten += mcc
            sen, spe = evaluate(y1_test, y_predict)
            sen_ten += sen
            spe_ten += spe
        accuracy = accuracy_ten / 10
        precision = precision_ten / 10
        f1_score = f1_score_ten / 10
        mcc = mcc_ten / 10
        spe = spe_ten / 10
        sen = sen_ten / 10
        accuracy = round(accuracy, 3)
        precision = round(precision, 3)
        f1_score = round(f1_score, 3)
        spe = round(spe, 3)
        sen = round(sen, 3)
        mcc = round(mcc, 3)
        acc_list.append(accuracy)
        pre_list.append(precision)
        f1_list.append(f1_score)
        mcc_list.append(mcc)
        sen_list.append(sen)
        spe_list.append(spe)