Пример #1
0
def getModel():
    job = input("Enter the JOB id of the saved model:")
    run = input("Enter the RUN id of the saved model:")
    
    job_name = "SS_job_" + str(job) + "/"
    run_id   = "run_"+str(run)
    saveDir  = getDir(client="SS", typ="TB")
    model    = saveDir+job_name+run_id
    
    return model 
Пример #2
0
def getData():
    data_dir = getDir(client="SS", typ="ML")
    df = pd.read_csv(data_dir + FILENM, sep="|")
    df = df.sample(frac=1.0)
    # No need for the HH during Testing
    del df['hh_num']
    # Drop any columns with NAN values
    before = df.shape[0]
    df = df.dropna(axis=0, how='any')
    after = df.shape[0]
    print("{}Deleted {:,.0f} rows out of {:,.0f} due to NAN".format(
        "\n", (before - after), before))
    return df
Пример #3
0
def getData():
    data_dir = getDir(client="SS", typ="ML")
    df       = pd.read_csv(data_dir+FILENM, sep="|")
    df       = df.sample(frac = 1.0)
    
    # Save the HH IDs before removing
    hh = df['hh_num']
    del df['hh_num']
    
    # Remove a Label column if there is one
    try:
        del df['Label']
    except:
        pass
    
    # Drop any columns with NAN values
    before = df.shape[0]
    df     = df.dropna(axis=0, how='any')
    after  = df.shape[0]
    print("{}Deleted {:,.0f} rows out of {:,.0f} due to NAN".format(
            "\n",(before-after), before))
    return df, hh
Пример #4
0
def get_models(job):
    job_name = "SS_job_" + str(job) + "/"
    saveDir = getDir(client="SS", typ="TB")
    for model in glob.glob(saveDir + job_name + '*.meta'):
        yield model