Пример #1
0
def command_line_arguments(year, month, day, plot_day, plot_month):
    if day!='None':
        limit = monthrange(int(year), int(month))[1]
        if int(day) > limit:
            print("Invalid Date for given month and year. Exiting...\n")
            exit()
        val = get_day(year, month, day)

        if plot_day:
            try:
                plot_points = get_day(year, month, day, rtr=True); val=False
                pl = plotting.Plotting(year=year, month=month, day=day)
                pl.normal_plot(plot_points)
                return "plotted"
            except IndexError:
                pass

    elif day == 'None':
        if month and year:
            print("\n YEAR: {} | MONTH: {} | \n".format(year, month))
            get_data.main(year, month)

            if plot_month:
                try:
                    monthly_average = get_month(year, month)
                    plot = plotting.Plotting(year=year, month=month)
                    plot.normal_plot(monthly_average, day=False)
                except IndexError:
                    raise("Index Error. Can't Plot Monthy Average Values.")
Пример #2
0
    def extract(self):
        get_data.main(self.images_root_dir, self.image_path_label_csv_path)

        if config_retrieval["model_kind"] == 'delf':
            self.delf.extract_feature_from_imagelabelcsv(
                self.image_path_label_csv_path, self.feature_npy_path)
        if config_retrieval['model_kind'] == 'ArcFace':
            pass
Пример #3
0
def get_day(year, month, day, rtr=False):
        response = get_data.get_value_from_database(year, month, day)
        if response:
                if rtr:
                    return json.loads(response[0][1])
                print("\n YEAR: {} | MONTH: {} | DAY: {}".format(year, month, day))
                print(response[0][1])
                return 1
        else:
                get_data.main(year,month,display=False)
                get_day(year, month, day)
Пример #4
0
def main(BUILD_STATE, IMAGES_PER_LABEL, TRAIN_MODEL):
    labels = [0, 1]
    get_data.main(BUILD_STATE, IMAGES_PER_LABEL, labels)
    datapath = 'data'
    dataset, plot_set = preprocess.compileData(data_path=datapath,
                                               make_new=BUILD_STATE)
    if BUILD_STATE:
        preprocess.example_plot(plot_set)

    convmodel = netmodel.buildModel(print_summary=False)
    if TRAIN_MODEL:
        netmodel.train(convmodel)
Пример #5
0
def data(run):
    """The basic interface depths are further processed to
    pull out maxima / minima using peakdetect. Parallax
    correction is applied here, as well as conversion of the
    data units from pixels in to tank relative numbers (units
    of fluid depth, lock length).

    At this point some 'sanity' images are written out with
    some of the measured data superimposed.

    The data extracted here are saved to another file.
    """
    get_data.main(run)
Пример #6
0
def cla():
    val = True
    try:
        year = sys.argv[1]
        month = sys.argv[2]
    except IndexError:
        display_error()
        exit()
    try:
        if int(year) > 2013 or int(year) < 1950:
            print("Year beyond the range. Exiting...\n")
            display_error()
            exit()
        if int(month) < 1 or int(month) > 12:
            print("Invlaid Month. Exiting...\n")
            display_error()
            exit()
    except ValueError:
        print("Invalid Numerical Value")
        exit()
    try:
        day = sys.argv[3]
        if int(day) > 31 or int(day) < 1:
            print("Invalid Dates. Exiting...\n")
            display_error()
            exit()
        limit = monthrange(int(year), int(month))[1]
        if int(day) > limit:
            print("Invalid Date for given month and year. Exiting...\n")
            display_error()
            exit()
        try:
            if not sys.argv[4]:
                val = get_day(year, month, day)
        except:
            pass
    except IndexError:
        pass
    try:
        if sys.argv[4]:
            plot_points = get_day(year, month, day, rtr=True)
            val = False
            pl = plotting.Plotting(year=year, month=month, day=day)
            pl.normal_plot(plot_points)
            return "plotted"
    except IndexError:
        pass
    if val:
        get_data.main(year, month)
Пример #7
0
def main():
    # get all possible flights and user params from get_data script 
    params, df_outbound, df_inbound = get_data.main()
    # print()

    # get common destinations for outbound and inbound trips
    # print('OUTBOUND FLIGHTS-------')
    # print('Date: ', params['date_outbound'])
    # print('Getting common destinations and calculating prices...')
    df_common_dest_outbound = get_common_dest(df_outbound)
    # print()
    # print('Saving flights to sorted_common_dest.txt')
    save_df_to_json(df_common_dest_outbound, 'Data/sorted_common_dest.json')
    # print()
    # print_top_flights(params, df_common_dest_outbound)

    # if params['date_inbound'] != None:
    # print()
    # print('INBOUND FLIGHTS-------')
    # print('Date: ', params['date_inbound'])
    # print('Getting common destinations and calculating prices...')
    #df_common_dest_inbound = get_common_dest(df_inbound)
    
    # have to figure out how to combine inbound and outbound
    # 

    print()
    print('Done!')
Пример #8
0
async def main():
    while True:
        with open(get_data.OUT_FILE) as f:
            old = f.read()
        get_data.main()
        print(
            "Fetched for updates, time:", strftime("%d %b %Y %H:%M:%S +0000", gmtime())
        )
        with open(get_data.OUT_FILE) as f:
            new = f.read()
        if new != old:
            print("Pushing new data")
            os.system("git pull")
            os.system(f"git add {get_data.OUT_FILE}")
            os.system('git commit -m "Update COVID-19 Data"')
            os.system("git push")
        await asyncio.sleep(30 * 60)  # 30 min
Пример #9
0
def get_all():
    substitutions = get_data.main()
    all_substitutions = []
    for teacher in substitutions.keys():
        teacher_subs = [{
            **create_sub(sub), "substitute_teacher": teacher
        } for sub in substitutions[teacher]]
        all_substitutions += sorted(teacher_subs,
                                    key=lambda sub: sub["lesson_id"])
    return jsonify({"data": all_substitutions})
Пример #10
0
def stocks():

    stock_data = get_data.main()
    stock_data_df = pd.DataFrame(stock_data)
    stock_data_df.drop(index = 0, inplace = True)
    stock_data_df['date'] = stock_data_df['date'].astype(str)
    stock_data_df=stock_data_df.rename(columns = {'date':'date_local'})
    stock_data_lod = stock_data_df.to_dict('records')
    
    # return render_template('index2.html', stock_data = stock_data)
    return jsonify(stock_data_lod)
Пример #11
0
def retail():

    stock_data, covid_data = get_data.main()

    topic = 'covid-19 retail industry'
    article_count = 5
    articles = get_data.get_articles(topic, article_count)

    return render_template('retail.html',
                           covid_data=covid_data,
                           stock_data=stock_data,
                           articles=articles)
Пример #12
0
def delivery():

    stock_data, covid_data = get_data.main()

    topic = 'covid-19 delivery industry'
    article_count = 5
    articles = get_data.get_articles(topic, article_count)

    return render_template('delivery.html',
                           covid_data=covid_data,
                           stock_data=stock_data,
                           articles=articles)
Пример #13
0
def index():

    stock_data, covid_data = get_data.main()

    topic = 'covid-19'
    article_count = 5
    articles = get_data.get_articles(topic, article_count)

    return render_template('index.html',
                           covid_data=covid_data,
                           stock_data=stock_data,
                           articles=articles)
Пример #14
0
def med_services():

    stock_data, covid_data = get_data.main()

    topic = 'covid-19 medical services'
    article_count = 5
    articles = get_data.get_articles(topic, article_count)

    return render_template('med_services.html',
                           covid_data=covid_data,
                           stock_data=stock_data,
                           articles=articles)
Пример #15
0
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import get_data

data = get_data.main()
data = data[data['Country/Region'] == 'US']
data = data[data['Province/State'] == 'Minnesota']
data_to_plot = data.get(['Province/State', 'date', 'n_cases'])
data_to_plot.plot()

plt.savefig('us_cases_by_state.pdf')
Пример #16
0
#! /usr/bin/env python
"""
This script should reproduce our best submission on Kaggle, using an already
trained CNN architecture for twitter sentiment analysis.

Our model is (at least) 1.6 GB, so we didn't attach it. Instead, you
can download it using the `get_data.py` script (which this script calls)

For the training, see the file `train_CNN.py`, and for evaluation, `eval_CNN.py`

Our code is an adaptation from the open source (Apache license) software at
https://github.com/dennybritz/cnn-text-classification-tf

Authors: András Ecker, Valentin Vasiliu, Ciprian I. Tomoiagă
"""

# Data preparation:
# ==================================================
import get_data
get_data.main()

# Model evaluation:
# ==================================================
import eval_CNN
Пример #17
0
    def __iter__(self):
        pre_frame = -self.__frame_gap - 1
        if self.__length == 0:
            loop = lambda x: True
        else:
            loop = lambda x: x < self.__length
        self.__reader.set(cv2.CAP_PROP_POS_FRAMES, self.__now_frame)
        self.__now_frame
        while loop(self.__now_frame):
            ret, im = self.__reader.read()
            if self.__now_frame - pre_frame > self.__frame_gap:
                pre_frame = self.__now_frame
                yield self.__now_frame, np.flip(im, 2)
            self.__frame_count -= 1
            if self.__frame_count == 0:
                break
            self.__now_frame += 1


if __name__ == "__main__":
    import get_data
    import sys
    pics = main(get_data.main(sys.argv[1], sys.argv[2]))
    for pic in pics:
        cv2.imshow('a', pic)
        k = cv2.waitKey(30) & 0xff
        if k == 29:
            break
    cv2.destroyAllWindows()
Пример #18
0
def index():

    stock_data = get_data.main()

    return render_template('index.html', stock_data = stock_data)
Пример #19
0
def main():
    args = parser.parse_args()
    if args.cfg_file is not None:
        cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        cfg_from_list(args.set_cfgs)

    # select device
    torch.cuda.set_device(args.gpu_id)
    print('[Info] use gpu: {}'.format(torch.cuda.current_device()))

    # get parameters
    sys.path.insert(0, args.model_dir)
    from params import params
    assert len(params) > 1

    last_cfg = params[0][-1]
    last_cfg()
    get_data.main()
    dataset = VQADataset('test', params[0][1])
    itoa = dataset.codebook['itoa']

    vote_buff = [{} for i in range(len(dataset))]
    conf_buff = np.zeros((len(dataset), len(itoa)))
    sm_conf_buff = np.zeros((len(dataset), len(itoa)))
    l2_conf_buff = np.zeros((len(dataset), len(itoa)))
    que_ids = dataset.que_id
    for fpath, mgrp, mname, acc, cfg_func, in params:
        # data
        if cfg_func != last_cfg:
            cfg_func()
            get_data.main()
            last_cfg = cfg_func
            dataset = VQADataset('test', mgrp)
            itoa = dataset.codebook['itoa']

        dataset.reload_obj(mgrp)
        dataloader = torch.utils.data.DataLoader(
                dataset, batch_size=args.bs, shuffle=False,
                num_workers=2, pin_memory=True)

        # model
        model_group = import_module('models.' + mgrp)
        model = getattr(model_group, mname)
                num_words=dataset.num_words,
                num_ans=dataset.num_ans,
                emb_size=get_emb_size())
        cp_file = os.path.join(args.model_dir, fpath)
        checkpoint = torch.load(cp_file, map_location=lambda s, l: s.cuda(0))
        model.load_state_dict(checkpoint['state_dict'])
        model.cuda()
        model.eval()

        # predict
        bar = progressbar.ProgressBar()
        start = 0
        # sample: (que_id, img, que, [obj])
        for sample in bar(dataloader):
            sample_var = [Variable(d).cuda() for d in list(sample)[1:]]
            score = model(*sample_var)
            sm_score = torch.nn.functional.softmax(score)
            l2_score = torch.nn.functional.normalize(score)

            bs = score.size(0)
            conf_buff[start:start+bs] += score.data.cpu().numpy()
            sm_conf_buff[start:start+bs] += sm_score.data.cpu().numpy()
            l2_conf_buff[start:start+bs] += l2_score.data.cpu().numpy()

            _, ans_ids = torch.max(score.data, dim=1)
            for i, ans_id in enumerate(ans_ids):
                ans = itoa[ans_id]
                ans_score = acc + vote_buff[start + i].get(ans, 0)
                vote_buff[start + i][ans] = ans_score

            start += bs
# -*- coding: utf-8 -*-
import get_data as get_data

get_data.main(product="", cve_id="", file_name="opensource_product_list5.csv")
Пример #21
0
def f_data(run):
    """Fast version of data.
    """
    get_data.main(run, 22)
Пример #22
0
def get_by_teacher(name):
    teachers = get_data.main()
    subs = teachers.get(name)
    substitutions_of_teacher = [create_sub(sub) for sub in subs]
    return jsonify({"data": substitutions_of_teacher})
Пример #23
0
parser.add_argument('-w','--nwalkers', default=8, help='(int) Number of walkers in parameter space', type=int)
args = parser.parse_args()
 
N_CPU = args.ncpu
MCMC_STEPS = args.chainlength
N_WALKERS = args.nwalkers


#%%
"""
 Get data from measurements
 Choose relevant transects.
 Slice by date
""" 
fn_weather_data = Path('data/weather_station_historic_data.xlsx')
dfs_by_transects = get_data.main(fn_weather_data)

# Choose transects
relevant_transects = ['P002', 'P012', 'P016', 'P018']
dfs_relevant_transects = {x: dfs_by_transects[x] for x in relevant_transects}
 
dfs_sliced_relevant_transects = {}
# Slice by julian day
jday_bounds = {'P002':[775, 817], # 660: 22/10/2019; 830: 9/4/2020
               'P012':[740, 771],
               'P015':[707, 724],
               'P016':[707, 731],
               'P018':[815, 827]
               }

for key, df in dfs_relevant_transects.items():
Пример #24
0
import pandas as pd
import get_data
import time
from oanda_api import buy_sell, accsum

buy_sell.mkt_position('AUD_USD', '-1')
current_status = 0  # 1 = in long position, 0 = in sort position
print('This is where the fun begins')
while True:
    instrument = "AUD_USD"
    df = get_data.main()
    account_value = accsum.account_value()
    units = round((0.04 * float(account_value)) / df['Close'].iloc[-1])

    if df['psarbull'].iloc[-1] != "NaN":
        if current_status == 0:
            current_status = 1
            print('Buy Signal')
            buy_sell.close_all('short', 'AUD_USD')
            time.sleep(5)
            buy_sell.mkt_position('AUD_USD', str(units))

    elif df['psarbear'].iloc[-1] != "NaN":
        if current_status == 1:
            current_status = 0
            print('Sell Signal')
            buy_sell.close_all('long', 'AUD_USD')
            time.sleep(5)
            buy_sell.mkt_position('AUD_USD', str(-units))

    print(current_status)
Пример #25
0
import get_data
url = "https://www.betexplorer.com/handball/sweden/she-women/"
x, y = get_data.main(url)
print(x, '\n\n', y)
Пример #26
0
def stock_page():

    stock_data = get_data.main()
        
    return render_template('stock-page.html')
Пример #27
0
def get_teachers():
    teachers = list(get_data.main().keys())
    filtered_teachers = filter_dismissed_lessons(teachers)
    return jsonify({"data": filtered_teachers})