def __load_peripheral_tables(self, peripheral_tables, s): peripheral_data_frames = [] for i, peripheral_table in enumerate(peripheral_tables): if type(peripheral_table) == engine.DataFrame: peripheral_data_frames.append(peripheral_table) else: categorical_peripheral = [ per.thisptr["categorical_"] for per in self.params["peripheral"] ] discrete_peripheral = [ per.thisptr["discrete_"] for per in self.params["peripheral"] ] numerical_peripheral = [ per.thisptr["numerical_"] for per in self.params["peripheral"] ] join_keys_peripheral = [ per.thisptr["join_keys_"] for per in self.params["peripheral"] ] names_peripheral = [ per.thisptr["name_"] for per in self.params["peripheral"] ] time_stamps_peripheral = [ per.thisptr["time_stamps_"] for per in self.params["peripheral"] ] peripheral_data_frames.append( engine.DataFrame(name=self.__make_random_name(), join_keys=join_keys_peripheral[i], time_stamps=time_stamps_peripheral[i], categorical=categorical_peripheral[i], discrete=discrete_peripheral[i], numerical=numerical_peripheral[i], targets=[], units=self.params['units'])) peripheral_data_frames[i].send(data_frame=peripheral_table, sock=s) return peripheral_data_frames
def __load_population_table(self, population_table, targets, s): if type(population_table) == engine.DataFrame: population_data_frame = population_table else: population_data_frame = engine.DataFrame( name=self.__make_random_name(), join_keys=self.params["population"].thisptr["join_keys_"], time_stamps=self.params["population"].thisptr["time_stamps_"], categorical=self.params["population"].thisptr["categorical_"], discrete=self.params["population"].thisptr["discrete_"], numerical=self.params["population"].thisptr["numerical_"], targets=targets, units=self.params["units"]) population_data_frame.send(data_frame=population_table, sock=s) return population_data_frame
# With this additional information in place we can construct # the `DataFrame`s, which will serve as our handles for the tables # stored in the engine. Using the `.send()` method we upload the # provided data to the engine and `.save()` ensures the `DataFrame` will # persist. # In[ ]: df_population_training = engine.DataFrame( "POPULATION_TRAINING", join_keys=JOIN_KEYS, time_stamps=TIME_STAMPS, categorical=CATEGORICAL, discrete=DISCRETE, numerical=NUMERICAL, targets=TARGETS, units=units ).send(CE_population_training) df_population_training.save() df_population_validation = engine.DataFrame( "POPULATION_VALIDATION", join_keys=JOIN_KEYS, time_stamps=TIME_STAMPS, categorical=CATEGORICAL, discrete=DISCRETE, numerical=NUMERICAL, targets=TARGETS, units=units