Пример #1
0
 def decode(self, W, method='euclid'):
     alpha = np.array([2], np.int)
     curr_deg = alpha
     alpha_list_t = [alpha[0]]
     for i in range(2 * self.t - 1):
         curr_deg = gf.prod(curr_deg, alpha, self.pm)
         alpha_list_t.append(curr_deg[0])
     alpha_list_n = alpha_list_t.copy()
     for i in range(self.n - 2 * self.t):
         curr_deg = gf.prod(curr_deg, alpha, self.pm)
         alpha_list_n.append(curr_deg[0])
     alpha_list_t = np.array(alpha_list_t)
     alpha_list_n = np.array(alpha_list_n)
     result = np.zeros(W.shape, np.int)
     if method == 'pgz':
         for row in range(W.shape[0]):
             deg_list = gf.polyval(W[row], alpha_list_t, self.pm)
             if np.all(deg_list == 0):
                 result[row] = W[row]
             else:
                 curr_dim = self.t
                 while (curr_dim > 0):
                     A = np.zeros((curr_dim, curr_dim), np.int)
                     for i in range(curr_dim):
                         A[i] = deg_list[i:curr_dim + i]
                     b = deg_list[curr_dim:2 * curr_dim]
                     value = gf.linsolve(A, b, self.pm)
                     if value is not np.nan:
                         value = np.concatenate((value, np.ones(1, np.int)))
                         break
                     curr_dim -= 1
                 if curr_dim == 0:
                     result[row] = np.nan
                 else:
                     roots = gf.polyval(value, alpha_list_n, self.pm)
                     roots = np.nonzero(np.logical_not(roots))
                     err_pos = (roots[0]) % self.n
                     result[row] = W[row]
                     result[row, err_pos] = np.logical_not(
                         result[row, err_pos]).astype(np.int)
                     if np.any(
                             gf.polyval(result[row], alpha_list_t, self.pm)
                             != 0):
                         result[row, :] = np.nan
     elif method == 'euclid':
         alpha_list_t = alpha_list_t[::-1]
         for row in range(W.shape[0]):
             S = gf.polyval(W[row], alpha_list_t, self.pm)
             S = np.concatenate((S, np.ones(1, np.int)))
             z = np.array([1] + [0 for x in range(2 * self.t + 1)], np.int)
             r, A, Lambda = gf.euclid(z, S, self.pm, self.t)
             roots = gf.polyval(Lambda, alpha_list_n, self.pm)
             roots = np.nonzero(np.logical_not(roots))
             err_pos = (roots[0]) % self.n
             result[row] = W[row]
             result[row, err_pos] = np.logical_not(
                 result[row, err_pos]).astype(np.int)
             if np.any(gf.polyval(result[row], alpha_list_t, self.pm) != 0):
                 result[row, :] = np.nan
     return result
Пример #2
0
def test_prod():
    X = np.array([[1, 5],
                  [14, 9],
                  [13, 5]])

    Y = np.array([[2, 3],
                  [5, 4],
                  [3, 11]])
    
    pm = np.array([[12,  2],
                   [13,  4],
                   [ 0,  8],
                   [14,  1],
                   [ 0,  2],
                   [ 0,  4],
                   [ 0,  8],
                   [15,  1],
                   [ 0,  2],
                   [ 0,  4],
                   [ 0,  8],
                   [ 0,  1],
                   [ 0,  2],
                   [ 0,  4],
                   [ 0,  8]])
    
    right_prod = np.array([[4, 8],
                           [8, 4],
                           [8, 8]])
    
    assert_equal(right_prod, gf.prod(X, Y, pm))
Пример #3
0
 def __init__(self, n, t):
     self.n = n
     self.t = t
     q = -1
     n_copy = n + 1
     while n_copy:
         n_copy = n_copy // 2
         q += 1
     if 2**q - 1 != n:
         raise ValueError('n is not 2^{q} - 1')
     with open('primpoly.txt', 'r') as file:
         primpoly_list = file.read().split(', ')
     for primpoly in primpoly_list:
         if int(primpoly) // 2**(q):  # if degree == q
             break
     primpoly = int(primpoly)
     self.pm = gf.gen_pow_matrix(primpoly)
     alpha = np.array([2], np.int)
     curr_poly = alpha
     degrees_list = [alpha[0]]
     for i in range(2 * t - 1):
         curr_poly = gf.prod(curr_poly, alpha, self.pm)
         degrees_list.append(curr_poly[0])
     self.g, self.R = gf.minpoly(np.array(degrees_list), self.pm)
     self.deg_g = self.g.shape[0] - 1
Пример #4
0
 def test_linsolve_random(self):
     while True:
         pm = gf.gen_pow_matrix(92127)
         pm_len = len(pm)
         n = 50
         A = np.array(
             [[pm[random.randint(0, pm_len - 1), 1] for _ in range(n)]
              for _ in range(n)])
         b = np.array(
             [pm[random.randint(0, pm_len - 1), 1] for _ in range(n)])
         solution = gf.linsolve(A, b, pm)
         if not (solution is np.nan):
             subst = [
                 gf.sum(
                     gf.prod(A[i].reshape(A[i].size, 1),
                             solution.reshape(solution.size, 1), pm))[0][0]
                 for i in range(n)
             ]
             assert_array_equal(subst, b)
             break
Пример #5
0
 def test_divide_all(self):
     pm = gf.gen_pow_matrix(357)
     for elem1 in pm[:, 1]:
         for elem2 in pm[:, 1]:
             a = gf.divide(np.array([[elem1]]), np.array([[elem2]]), pm)
             self.assertEqual(elem1, gf.prod(a, np.array([[elem2]]), pm))
Пример #6
0
 def test_divide_inverse(self):
     pm = gf.gen_pow_matrix(88479)
     for elem in pm[:, 1]:
         inverse = gf.divide(np.array([[1]]), np.array([[elem]]), pm)
         self.assertEqual(1, gf.prod(inverse, np.array([[elem]]), pm))