coverage = np.array(cov_list) position = np.array(pos_list) hda = list(chain.from_iterable(hdata)) start = min(position) end = max(position) pos_space = np.linspace(start, end, end-start) kde = gaussian_kde(hda) kde_pdf = kde.evaluate(pos_space) fig = plt.figure() # TODO: make this args #fig.patch.set_alpha(0) ax = fig.add_subplot(111) # TODO: Make normed an args hist, bis, patches = rhist(ax, np.array(hda), normed=True, facecolor="#dc322f", edgecolor='#dc322f', alpha=0.2) # scale signal new_max = max(hist) kde_pdf = kde_pdf / max(kde_pdf) * new_max plot(pos_space, kde_pdf, color='#268bd2', alpha=0.8) ax.legend() ax.set_xlabel('HSR1 nt') ax.set_ylabel('Coverage') ax.title.set_fontsize(18) ax.fill_between(pos_space, kde_pdf, color="#268bd2", alpha=0.4) rstyle(ax) show()
fig = plt.figure() if args.transparent: fig.patch.set_alpha(0) ax = fig.add_subplot(111) defaults = { 'facecolor': '#dc322f', 'edgecolor': '#dc322f', 'alpha': 0.2, } if args.normed: defaults.update({'normed': True,}) hist, bis, patches = rhist(ax, np.array(hdata), **defaults) ax.legend() ax.set_xlabel('nt') ax.set_ylabel('Coverage') ax.title.set_fontsize(18) if args.kde: kde = gaussian_kde(np.array(hdata)) kde_pdf = kde.evaluate(pos_space) # TODO: Implement scaling as a separate funcion new_max = max(hist) kde_pdf = kde_pdf / max(kde_pdf) * new_max plot(pos_space, kde_pdf, color='#268bd2', alpha=0.8) ax.fill_between(pos_space, kde_pdf, color="#268bd2", alpha=0.4) rstyle(ax) show()