Пример #1
0
def run(gp):
    import gr_params
    gpr = gr_params.grParams(gp)

    print('input: ', gpr.fil)
    x0,y0,vlos = np.genfromtxt(gpr.fil, skiprows=0, unpack =  True,
                               usecols = (0,1,5))

    # use only 3000 random particles:
    ind = np.arange(len(x0))
    np.random.shuffle(ind)
    ind = ind[:3000]
    x0 = x0[ind];    y0 = y0[ind];    vlos = vlos[ind]

    x0 *= 1000.                         # [pc]
    y0 *= 1000.                         # [pc]

    # shrinking sphere method
    pm = np.ones(len(x0))
    com_x, com_y, com_vz = gc.com_shrinkcircle_v_2D(x0, y0, vlos, pm)

    x0 -= com_x # [pc]
    y0 -= com_y # [pc]
    vlos -= com_vz #[km/s]

    import gi_file as gf
    for pop in range(2):
        Rc = np.sqrt(x0**2+y0**2) # [pc]
        Rhalf = np.median(Rc) # [pc]
        Rscale = Rhalf # or gpr.r_DM # [pc]
        gp.Xscale.append(Rscale) # [pc]

        print('Rscale = ', Rscale,' pc')
        print('max(R) = ', max(Rc),' pc')
        print('total number of stars: ', len(Rc))

        R0 = np.sqrt(x0**2+y0**2)/Rscale
        sel = (R0 < gp.maxR)
        x = x0[sel]/Rscale; y = y0[sel]/Rscale # [Rscale]
        vz = vlos[sel] # [km/s]
        m = np.ones(len(x))
        R = np.sqrt(x*x+y*y)*Rscale # [pc]

        gf.write_Xscale(gp.files.get_scale_file(pop), np.median(R))

        c = open(gp.files.get_com_file(pop), 'w')
        print('# x [Xscale],','y [Xscale],','vLOS [km/s],','Xscale = ', \
              Rscale, ' pc', file=c)
        for k in range(len(x)):
            print(x[k], y[k], vz[k], file=c) #[rscale], [rscale], [km/s]
        c.close()

        if gpr.showplots:
            gpr.show_part_pos(x, y, np.ones(len(x)), Rscale)
Пример #2
0
def run(gp):
    import gr_params
    gpr = gr_params.grParams(gp)
    gpr.fil = gpr.dir+"/data/tracers.dat"
    A = np.loadtxt(gpr.fil, skiprows=25)
    RAh,RAm,RAs,DEd,DEm,DEs,Vlos,e_Vlos,Teff,e_Teff,logg,e_logg,Fe,e_Fe,Nobs = A.T
    # only use stars which have Mg measurements
    pm = (Nobs>0) # (PM>=0.95)*
    print("f_members = ", gh.pretty(1.*sum(pm)/len(pm)))
    RAh=RAh[pm]
    RAm=RAm[pm]
    RAs=RAs[pm]
    DEd=DEd[pm]
    DEm=DEm[pm]
    DEs=DEs[pm]
    Vlos=Vlos[pm]
    e_Vlos=e_Vlos[pm]
    Teff=Teff[pm]
    e_Teff=e_Teff[pm]
    logg=logg[pm]
    e_logg=e_logg[pm]
    Fe=Fe[pm]
    e_Fe=e_Fe[pm]
    Nobs = Nobs[pm]

    sig = abs(RAh[0])/RAh[0]
    #print('RAh: signum = ',gh.pretty(sig))
    RAh = RAh/sig
    xs = 15*(RAh*3600+RAm*60+RAs)*sig       # [arcsec/15]

    sig = abs(DEd[0])/DEd[0]
    #print('DEd: signum = ', gh.pretty(sig))
    DEd = DEd/sig
    ys = (DEd*3600+DEm*60+DEs)*sig          # [arcsec]

    arcsec = 2.*np.pi/(360.*60.*60) # [pc]

    kpc = 1000 # [pc]
    DL = {1: lambda x: x * (138),#+/- 8 for Fornax
          2: lambda x: x * (101),#+/- 5 for Carina
          3: lambda x: x * (79), #+/- 4 for Sculptor
          4: lambda x: x * (86), #+/- 4 for Sextans
          5: lambda x: x * (80)  #+/- 10 for Draco
      }[gp.case](kpc)

    xs *= (arcsec*DL) # [pc]
    ys *= (arcsec*DL) # [pc]

    x0 = np.copy(xs)
    y0 = np.copy(ys)    # [pc]
    vz0 = np.copy(Vlos) # [km/s]
    Fe0 = np.copy(Fe)

    # only use stars which are members of the dwarf: exclude pop3 by construction
    #pm = (PM0 >= gpr.pmsplit) # exclude foreground contamination, outliers
    #x0, y0, vz0, Mg0, PM0 = select_pm(x0, y0, vz0, Mg0, PM0, pm)

    # assign population
    if gp.pops == 2:
        # drawing of populations based on metallicity
        # get parameters from function in pymcmetal.py
        #[p, mu1, sig1, mu2, sig2] = np.loadtxt(gp.files.dir+'metalsplit.dat')
        #[pm1, pm2] = np.loadtxt(gp.files.dir+'metalsplit_assignment.dat')
        popass = np.loadtxt(gp.files.dir+'popass')
        pm1 = (popass==1)
        pm2 = (popass==2)

    elif gp.pops == 1:
        pm1 = (Teff >= 0)
        pm2 = (Teff <  0) # assign none, but of same length as xs

    x1, y1, vz1, Fe1, PM1 = select_pm(x0, y0, vz0, Fe, pm, pm1)
    x2, y2, vz2, Fe2, PM2 = select_pm(x0, y0, vz0, Fe, pm, pm2)

    # cutting pm_i to a maximum of ntracers_i particles each:
    ind1 = np.arange(len(x1))
    np.random.shuffle(ind1)     # random.shuffle already changes ind
    ind1 = ind1[:gp.ntracer[1-1]]

    ind2 = np.arange(len(x2))
    np.random.shuffle(ind2)     # random.shuffle already changes ind
    ind2 = ind2[:gp.ntracer[2-1]]

    x1, y1, vz1, Fe1, PMS1 = select_pm(x1, y1, vz1, Fe1, PM1, ind1)
    x2, y2, vz2, Fe2, PMS2 = select_pm(x2, y2, vz2, Fe2, PM2, ind2)

    x0, y0, vz0, pm1, pm2, pm = concat_pops(x1, x2, y1, y2, vz1, vz2, gp)

    # optimum: get 3D center of mass with means
    # com_x, com_y, com_z = com_mean(x0,y0,z0,PM0) # 3*[pc],  z component included if available

    com_x, com_y, com_vz = com_shrinkcircle_v_2D(x0, y0, vz0, pm) # [pc], [km/s]

    # from now on, work with 2D data only; z0 was only used to get center in (x,y) better
    # x0 -= com_x; y0 -= com_y # [pc]
    # vz0 -= com_vz #[km/s]

    R0 = np.sqrt(x0**2+y0**2) # [pc]
    Rhalf = np.median(R0) # [pc]
    Rscale = Rhalf # [pc] overall

    pop = -1
    for pmn in [pm, pm1, pm2]:
        pop = pop+1
        pmr = (R0<(gp.maxR*Rscale)) # read max extension for data
                                    # (rprior*Rscale) from gi_params
        pmn = pmn*pmr                   # [1]
        print("fraction of members = ", 1.0*sum(pmn)/len(pmn))

        x, y, vz, Fe, PMN = select_pm(x0, y0, vz0, Fe0, pm, pmn)

        R = np.sqrt(x*x+y*y)            # [pc]
        Rscalei = np.median(R)          # [pc]
        gf.write_Xscale(gp.files.get_scale_file(pop), Rscalei) # [pc]
        gf.write_data_output(gp.files.get_com_file(pop), x/Rscalei, y/Rscalei, vz, Rscalei) # [pc]

        if gpr.showplots:
            gpr.show_part_pos(x, y, pmn, Rscale)
Пример #3
0
def run(gp):
    import gr_params
    gpr = gr_params.grParams(gp)
    gpr.fil = gpr.dir + "/data/tracers.dat"
    delim = [0, 22, 3, 3, 6, 4, 3, 5, 6, 6, 7, 5, 6, 5, 6, 5, 6]
    ID = np.genfromtxt(gpr.fil,
                       skiprows=29,
                       unpack=True,
                       usecols=(0, 1),
                       delimiter=delim)
    RAh, RAm, RAs, DEd, DEm, DEs, Vmag, VI, VHel, e_VHel, SigFe, e_SigFe, SigMg, e_SigMg, PM = np.genfromtxt(
        gpr.fil,
        skiprows=29,
        unpack=True,
        usecols=tuple(range(2, 17)),
        delimiter=delim,
        filling_values=-1)

    # only use stars which have Mg measurements
    pm = (SigMg > -1) * (PM >= 0.95)
    print("f_members = ", gh.pretty(1. * sum(pm) / len(pm)))
    ID = ID[1][pm]
    RAh = RAh[pm]
    RAm = RAm[pm]
    RAs = RAs[pm]
    DEd = DEd[pm]
    DEm = DEm[pm]
    DEs = DEs[pm]
    Vmag = Vmag[pm]
    VI = VI[pm]
    VHel = VHel[pm]
    e_VHel = e_VHel[pm]
    SigFe = SigFe[pm]
    e_SigFe = e_SigFe[pm]
    SigMg = SigMg[pm]
    e_SigMg = e_SigMg[pm]
    PM = PM[pm]

    Mg0 = SigMg
    sig = abs(RAh[0]) / RAh[0]
    RAh = RAh / sig
    xs = 15 * (RAh * 3600 + RAm * 60 + RAs) * sig  # [arcsec/15]

    sig = abs(DEd[0]) / DEd[0]
    DEd = DEd / sig
    ys = (DEd * 3600 + DEm * 60 + DEs) * sig  # [arcsec]

    arcsec = 2. * np.pi / (360. * 60. * 60)  # [pc]

    kpc = 1000  # [pc]
    DL = {
        1: lambda x: x * (138),  #+/- 8 for Fornax
        2: lambda x: x * (101),  #+/- 5 for Carina
        3: lambda x: x * (79),  #+/- 4 for Sculptor
        4: lambda x: x * (86),  #+/- 4 for Sextans
        5: lambda x: x * (80)  #+/- 10 for Draco
    }[gp.case](kpc)

    xs *= (arcsec * DL)  # [pc]
    ys *= (arcsec * DL)  # [pc]

    PM0 = np.copy(PM)
    x0 = np.copy(xs)
    y0 = np.copy(ys)  # [pc]
    vz0 = np.copy(VHel)  # [km/s]

    # only use stars which are members of the dwarf: exclude pop3 by construction
    #pm = (PM0 >= gpr.pmsplit) # exclude foreground contamination, outliers
    #x0, y0, vz0, Mg0, PM0 = select_pm(x0, y0, vz0, Mg0, PM0, pm)

    # assign population
    if gp.pops == 2:
        # drawing of populations based on metallicity
        # get parameters from function in pymcmetal.py
        #[p, mu1, sig1, mu2, sig2] = np.loadtxt(gp.files.dir+'metalsplit.dat')
        #[pm1, pm2] = np.loadtxt(gp.files.dir+'metalsplit_assignment.dat')
        popass = np.loadtxt(gp.files.dir + 'popass')
        pm1 = (popass == 1)
        pm2 = (popass == 2)

    elif gp.pops == 1:
        pm1 = (PM >= 0)
        pm2 = (PM < 0)  # assign none, but of same length as xs

    x1, y1, vz1, Mg1, PM1 = select_pm(x0, y0, vz0, Mg0, PM0, pm1)
    x2, y2, vz2, Mg2, PM2 = select_pm(x0, y0, vz0, Mg0, PM0, pm2)

    # cutting pm_i to a maximum of ntracers_i particles each:
    ind1 = np.arange(len(x1))
    np.random.shuffle(ind1)  # random.shuffle already changes ind
    ind1 = ind1[:gp.ntracer[1 - 1]]

    ind2 = np.arange(len(x2))
    np.random.shuffle(ind2)  # random.shuffle already changes ind
    ind2 = ind2[:gp.ntracer[2 - 1]]

    x1, y1, vz1, Mg1, PMS1 = select_pm(x1, y1, vz1, Mg1, PM1, ind1)
    x2, y2, vz2, Mg2, PMS2 = select_pm(x2, y2, vz2, Mg2, PM2, ind2)

    x0, y0, vz0, pm1, pm2, pm = concat_pops(x1, x2, y1, y2, vz1, vz2, gp)

    # optimum: get 3D center of mass with means
    # com_x, com_y, com_z = com_mean(x0,y0,z0,PM0) # 3*[pc],  z component included if available

    com_x, com_y, com_vz = com_shrinkcircle_v_2D(x0, y0, vz0,
                                                 pm)  # [pc], [km/s]

    # from now on, work with 2D data only; z0 was only used to get center in (x,y) better
    # x0 -= com_x; y0 -= com_y # [pc]
    # vz0 -= com_vz #[km/s]

    R0 = np.sqrt(x0**2 + y0**2)  # [pc]
    Rhalf = np.median(R0)  # [pc]
    Rscale = Rhalf  # [pc] overall

    pop = -1
    for pmn in [pm, pm1, pm2]:
        pop = pop + 1
        pmr = (R0 < (gp.maxR * Rscale))  # read max extension for data
        # (rprior*Rscale) from gi_params
        pmn = pmn * pmr  # [1]
        print("fraction of members = ", 1.0 * sum(pmn) / len(pmn))

        x, y, vz, Mg, PMN = select_pm(x0, y0, vz0, Mg0, PM0, pmn)

        R = np.sqrt(x * x + y * y)  # [pc]
        Rscalei = np.median(R)  # [pc]
        gf.write_Xscale(gp.files.get_scale_file(pop), Rscalei)  # [pc]
        gf.write_data_output(gp.files.get_com_file(pop), x / Rscalei,
                             y / Rscalei, vz, Rscalei)  # [pc]

        if gpr.showplots:
            gpr.show_part_pos(x, y, pmn, Rscale)
Пример #4
0
# instead of using other datasets for individual dSph,
# determine Heliocentric-Rest-Frame Line-Of-Sight velocity of dwarf Vd
# and position of dwarf (ad, dd)
# from probability-of-membership weighted means directly
Vd = np.sum(Vhel * PM) / np.sum(PM)  # [km/s]
ad = np.sum(alpha_s * PM) / np.sum(PM)  # [arcsec]
dd = np.sum(delta_s * PM) / np.sum(PM)  # [arcsec]
# determine distance to dwarf
xs = alpha_s * DL  # [pc]
ys = delta_s * DL  # [pc]
PM0 = 1. * np.copy(PM)
x0 = 1. * np.copy(xs)
y0 = 1. * np.copy(ys)  # [pc]

# remove center displacement, already change x0
com_x, com_y, com_vz = com_shrinkcircle_v_2D(x0, y0, Vhel, PM)  # [pc], [km/s]
R0 = np.sqrt(x0**2 + y0**2)
# sort by R0 so integral makes sense later
order = np.argsort(R0)
R0 = R0[order]
PM0 = PM0[order]
x0 = x0[order]
y0 = y0[order]
xs = xs[order]
ys = ys[order]
alpha_s = alpha_s[order]
delta_s = delta_s[order]
Vhel = Vhel[order]
Vhel_err = Vhel_err[order]
Fe = Fe[order]
Fe_err = Fe_err[order]