def main(): glfw.setErrorCallback(error_callback) glfw.init() glfw.windowHint(glfw.CONTEXT_VERSION_MAJOR, 3) glfw.windowHint(glfw.CONTEXT_VERSION_MINOR, 3) glfw.windowHint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) # glfw.windowHint(glfw.RESIZABLE, gl.FALSE) glfw.windowHint(glfw.OPENGL_FORWARD_COMPAT, 1) window = glfw.createWindow(WIDTH, HEIGHT, "LearnOpenGL") if window is None: print('could not open window.') glfw.terminate() sys.exit() window.makeContextCurrent() # window.setInputMode(glfw.CURSOR, glfw.CURSOR_DISABLED) window.setKeyCallback(key_callback) gl.init() err = gl.getError() if err: print("WINDOW OPEN ERROR:", err) # set up the first model armored_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "armored_plate.75.75.decimation_test7.obj")) armored_plate_model = Model.FromJSON(armored_plate_data, InstanceData, PlateInstance) plane_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "plane_plate.75.75.decimation_test.00.obj")) plane_plate_model = Model.FromJSON(plane_plate_data, InstanceData, PlateInstance) angled_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "angled_plate_plane.75.25..25.decimated.obj")) angled_plate_model = Model.FromJSON(angled_plate_data, InstanceData, PlateInstance) models =[armored_plate_model, plane_plate_model, angled_plate_model] scene = Scene() camera = Camera(name='camera', parent=scene) # set up the data for the instances. # 30 x 30 array of tiles, which are randomly selected among the above models instances = {} transforms = {} n = 30 for i in range(n): for j in range(n): r = random.choice(range(4)) transform = Mat4.Translation(Vec3((i-n//2) * 2, 0.0, (j-n//2) * 2)) * Mat4.Rotation(math.pi/2.0 * r, Vec3(0.0, 1.0, 0.0)) transform_node = TransformNode3D(name='tranform.%i.%i' % (i, j), parent=scene, m=transform) transforms[i,j] = transform_node instance = ModelInstance(random.choice(models), model_matrix=transform, parent=transform_node, name='model.%i.%i' % (i,j)) instance.model_matrix = transform instances[i,j] = instance instance.r = r framebuffer_width, framebuffer_height = window.getFramebufferSize() camera.projection_matrix = Mat4.Perspective(45.0, framebuffer_width/framebuffer_height, 0.1, 100.0) camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock()), 1.0, math.sin(time.clock())) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) t0 = time.perf_counter() frames = 0 while not window.shouldClose(): glfw.pollEvents() gl.enable(gl.DEPTH_TEST) gl.depthFunc(gl.LEQUAL) gl.enable(gl.CULL_FACE) gl.cullFace(gl.BACK) t = time.perf_counter() framebuffer_width, framebuffer_height = window.getFramebufferSize() camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock() * 0.1), 1.0, math.sin(time.clock() * 0.1)) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) viewport = (0, 0, framebuffer_width, framebuffer_height) camera.render_to_viewport(viewport) err = gl.getError() if err: print("ERROR:", err) if TEST_ANIMATION: for i in range(n): for j in range(n): instance = instances[i,j] enabled = math.sin(i+j+t*10.0) > -0.8 instance.set_enabled(enabled) if enabled: transform_node = transforms[i,j] y = (math.sin(t+i) + math.cos(t+j)) * 0.25 transform = Mat4.Translation(Vec3((i-n//2) * 2, y, (j-n//2) * 2)) * Mat4.Rotation(math.pi/2.0 * instance.r, Vec3(0.0, 1.0, 0.0)) transform_node.local_matrix = transform # TODO: this should be done automatically in nodetree.graphics.Scene.update_instances instance.instance.model_matrix = transform_node.to_mat4() scene.update_instances() window.swapBuffers() frames += 1 if not frames % 100: print("FRAME RATE:", float(frames)/(time.perf_counter() - t0))
def main(): glfw.setErrorCallback(error_callback) glfw.init() glfw.windowHint(glfw.CONTEXT_VERSION_MAJOR, 3) glfw.windowHint(glfw.CONTEXT_VERSION_MINOR, 3) glfw.windowHint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) glfw.windowHint(glfw.RESIZABLE, gl.FALSE) glfw.windowHint(glfw.OPENGL_FORWARD_COMPAT, 1) window = glfw.createWindow(WIDTH, HEIGHT, "LearnOpenGL") if window is None: # print('could not open window.') glfw.terminate() sys.exit() cursor = Vec2() window_size = Vec2(WIDTH, HEIGHT) ui = EventEmitter() def mouse_move_callback(window, x, y): nonlocal cursor # print('mouse move:', window, x, y) cursor = Vec2(x, window_size.y - y) ui.emit('mouse_move', window, cursor) def mouse_button_callback(window, button, action, mods): print('mouse button:', window, button, action, mods) ui.emit('mouse_button', window, button, action, mods) def window_size_callback(window, width, height): nonlocal window_size window_size.x = width window_size.y = height window.makeContextCurrent() # window.setInputMode(glfw.CURSOR, glfw.CURSOR_DISABLED) window.setKeyCallback(key_callback) window.setMouseButtonCallback(mouse_button_callback) window.setCursorPosCallback(mouse_move_callback) window.setWindowSizeCallback(window_size_callback) gl.init() err = gl.getError() if err: print("WINDOW OPEN ERROR:", err) # pre game-loop initialization scene = Scene() # construct the triangle triangle_points = Vector(Vec3) triangle_points.append(Vec3(-0.5, -0.5, 0.0)) triangle_points.append(Vec3( 0.5, -0.5, 0.0)) triangle_points.append(Vec3(-0.5, 0.5, 0.0)) triangle_indices = Vector(c_ubyte) triangle_indices.append(0) triangle_indices.append(1) triangle_indices.append(2) triangle_attribs = BufferAttribs(sizeof(Vec3)) triangle_attribs.add(BufferAttribs.POSITION_INDEX, 3, gl.FLOAT, gl.FALSE, 0) triangle_shader = ShaderProgram(VERTEX_SHADER_SOURCE, FRAGMENT_SHADER_SOURCE) triangle_draw_call = DrawCall(gl.UNSIGNED_BYTE, gl.LINE_LOOP, 0, len(triangle_indices)) triangle_material = {} triangle_mesh = Mesh(triangle_shader, triangle_draw_call, triangle_material) triangle_model = Model(triangle_indices.get_data(), triangle_points.get_data(), triangle_attribs, [triangle_mesh], InstanceData, ItemInstance) triangle_instance = scene.add(triangle_model, InstanceData(model_matrix=Mat4.Identity(), base_color=Vec3(1.0, 0.0, 0.0))) # construct the reticle RETICLE_SIZE = 0.01 reticle_points = Vector(Vec3) reticle_points.append(Vec3(-RETICLE_SIZE * 0.5, -RETICLE_SIZE * 0.5, 0.0)) reticle_points.append(Vec3(-RETICLE_SIZE * 0.5, RETICLE_SIZE * 0.5, 0.0)) reticle_points.append(Vec3( RETICLE_SIZE * 0.5, RETICLE_SIZE * 0.5, 0.0)) reticle_points.append(Vec3( RETICLE_SIZE * 0.5, -RETICLE_SIZE * 0.5, 0.0)) reticle_indices = Vector(c_ubyte) reticle_indices.append(0) reticle_indices.append(1) reticle_indices.append(2) reticle_indices.append(3) reticle_attribs = BufferAttribs(sizeof(Vec3)) reticle_attribs.add(BufferAttribs.POSITION_INDEX, 3, gl.FLOAT, gl.FALSE, 0) reticle_shader = triangle_shader reticle_draw_call = DrawCall(gl.UNSIGNED_BYTE, gl.LINE_LOOP, 0, len(reticle_indices)) reticle_material = {} reticle_mesh = Mesh(reticle_shader, reticle_draw_call, reticle_material) reticle_model = Model(reticle_indices.get_data(), reticle_points.get_data(), reticle_attribs, [reticle_mesh], InstanceData, ItemInstance) # construct the AABB model aabb = AABB3() aabb.include_point(Vec3(0.0, 0.0, 0.0)) aabb.include_point(Vec3(0.2, 0.2, 0.2)) aabb_points = Vector(Vec3) aabb_points.append(Vec3(aabb.min.x, aabb.min.y, aabb.min.z)) aabb_points.append(Vec3(aabb.max.x, aabb.min.y, aabb.min.z)) aabb_points.append(Vec3(aabb.min.x, aabb.max.y, aabb.min.z)) aabb_points.append(Vec3(aabb.max.x, aabb.max.y, aabb.min.z)) aabb_points.append(Vec3(aabb.min.x, aabb.min.y, aabb.max.z)) aabb_points.append(Vec3(aabb.max.x, aabb.min.y, aabb.max.z)) aabb_points.append(Vec3(aabb.min.x, aabb.max.y, aabb.max.z)) aabb_points.append(Vec3(aabb.max.x, aabb.max.y, aabb.max.z)) # lines aabb_indices = Vector(c_ubyte) aabb_indices.append(0) aabb_indices.append(1) aabb_indices.append(2) aabb_indices.append(3) aabb_indices.append(4) aabb_indices.append(5) aabb_indices.append(6) aabb_indices.append(7) aabb_indices.append(0) aabb_indices.append(4) aabb_indices.append(1) aabb_indices.append(5) aabb_indices.append(2) aabb_indices.append(6) aabb_indices.append(3) aabb_indices.append(7) aabb_indices.append(0) aabb_indices.append(2) aabb_indices.append(1) aabb_indices.append(3) aabb_indices.append(4) aabb_indices.append(6) aabb_indices.append(5) aabb_indices.append(7) aabb_attribs = BufferAttribs(sizeof(Vec3)) aabb_attribs.add(BufferAttribs.POSITION_INDEX, 3, gl.FLOAT, gl.FALSE, 0) aabb_shader = triangle_shader aabb_draw_call = DrawCall(gl.UNSIGNED_BYTE, gl.LINES, 0, len(aabb_indices)) aabb_material = {} aabb_mesh = Mesh(aabb_shader, aabb_draw_call, aabb_material) aabb_model = Model(aabb_indices.get_data(), aabb_points.get_data(), aabb_attribs, [aabb_mesh], InstanceData, ItemInstance) # reticle_instances = ModelInstances(reticle_model, InstanceData, ItemInstance) reticle_instance = scene.add(reticle_model, InstanceData(model_matrix=Mat4.Identity())) # aabb_instances = ModelInstances(aabb_model, InstanceData, ItemInstance) aabb_instance = scene.add(aabb_model, InstanceData(model_matrix=Mat4.Identity())) #reticle_instance.set_enabled(False) ray_scene = RayScene() # ui.on('mouse_move' lambda window, cursor: scene.mouse_move(camera, viewport, cursor)) camera = Camera(scene=scene) framebuffer_width, framebuffer_height = window.getFramebufferSize() # camera.projection_matrix = Mat4.Identity() camera.projection_matrix = Mat4.Perspective(45.0, framebuffer_width/framebuffer_height, 0.1, 100.0) camera.view_matrix = Mat4.Identity() t0 = time.perf_counter() frames = 0 while not window.shouldClose(): glfw.pollEvents() gl.enable(gl.DEPTH_TEST) gl.depthFunc(gl.LEQUAL) gl.enable(gl.CULL_FACE) gl.cullFace(gl.BACK) t = time.perf_counter() err = gl.getError() if err: print("ERROR:", err) # render the frame framebuffer_width, framebuffer_height = window.getFramebufferSize() # camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock() * 0.1), 1.0, math.sin(time.clock() * 0.1)) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) camera.view_matrix = Mat4.LookAt( Vec3(math.cos(time.clock() * 0.1), 1.0, math.sin(time.clock() * 0.1)) *2.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0) ) viewport = (0, 0, framebuffer_width, framebuffer_height) camera.render_to_viewport(viewport) # not sure if this is correct when the viewport size doesn't match the framebuffer size. ray_origin, ray_direction = camera.get_ray(cursor, viewport) # print(ray) result = raytri.intersect_triangle(ray_origin, ray_direction, *triangle_points) if result: t, u, v = result hit_pos = triangle_points[0] * (1.0 - u - v) + triangle_points[1] * u + triangle_points[2] * v reticle_instance.set_enabled(True) reticle_instance.model_matrix = Mat4.Translation(hit_pos) reticle_instance.base_color = Vec3(1.0, 1.0, 1.0) triangle_instance.base_color = Vec3(1.0, 0.0, 0.0) else: reticle_instance.set_enabled(False) triangle_instance.base_color = Vec3(1.0, 1.0, 1.0) reticle_instance.base_color = Vec3(0.0, 0.0, 0.0) result = raytri.hit_aabb(ray_origin, ray_direction, aabb) if result: aabb_instance.base_color = Vec3(1.0, 0.0, 0.0) else: aabb_instance.base_color = Vec3(1.0, 1.0, 1.0) # print((ray_origin, ray_direction), result) # update buffers scene.update_instances() window.swapBuffers() frames += 1 if not frames % 100: print("FRAME RATE:", float(frames)/(time.perf_counter() - t0))
def main(): glfw.setErrorCallback(error_callback) glfw.init() glfw.windowHint(glfw.CONTEXT_VERSION_MAJOR, 3) glfw.windowHint(glfw.CONTEXT_VERSION_MINOR, 3) glfw.windowHint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) # glfw.windowHint(glfw.RESIZABLE, gl.FALSE) glfw.windowHint(glfw.OPENGL_FORWARD_COMPAT, 1) if ENABLE_MULTISAMPLE: glfw.windowHint(glfw.SAMPLES, 4) window = glfw.createWindow(WIDTH, HEIGHT, "LearnOpenGL") if window is None: print('could not open window.') glfw.terminate() sys.exit() window.makeContextCurrent() # window.setInputMode(glfw.CURSOR, glfw.CURSOR_DISABLED) window.setKeyCallback(key_callback) gl.init() err = gl.getError() if err: print("WINDOW OPEN ERROR:", err) framebuffer_width, framebuffer_height = window.getFramebufferSize() # Framebuffers framebuffer = gl.genFramebuffers(1)[0] gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer); # Create a color attachment texture textureColorbuffer = generateAttachmentTexture(gl.RGB, framebuffer_width, framebuffer_height); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, textureColorbuffer, 0) # set up the position buffer gPosition = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gPosition) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT1, gl.TEXTURE_2D, gPosition, 0) # set up the normal buffer gNormal = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gNormal) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT2, gl.TEXTURE_2D, gNormal, 0) gLight = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gLight) gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT3, gl.TEXTURE_2D, gLight, 0) # - Tell OpenGL which color attachments we'll use (of this framebuffer) for rendering attachments = [gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1, gl.COLOR_ATTACHMENT2] gl.drawBuffers(attachments) gDepth = gl.genTextures(1)[0] gl.bindTexture(gl.TEXTURE_2D, gDepth) gl.texImage2D(gl.TEXTURE_2D, 0, gl.DEPTH24_STENCIL8, framebuffer_width, framebuffer_height, 0, gl.DEPTH_STENCIL, gl.UNSIGNED_INT_24_8, None) # gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGB16F, framebuffer_width, framebuffer_height, 0, gl.RGB, gl.FLOAT, None) gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.TEXTURE_2D, gDepth, 0) # Create a renderbuffer object for depth and stencil attachment (we won't be sampling these) # rbo = gl.genRenderbuffers(1)[0] # gl.bindRenderbuffer(gl.RENDERBUFFER, rbo) # gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH24_STENCIL8, framebuffer_width, framebuffer_height); # Use a single renderbuffer object for both a depth AND stencil buffer. # gl.bindRenderbuffer(gl.RENDERBUFFER, 0); # gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_STENCIL_ATTACHMENT, gl.RENDERBUFFER, rbo) # Now actually attach it # Now that we actually created the framebuffer and added all attachments we want to check if it is actually complete now if gl.checkFramebufferStatus(gl.FRAMEBUFFER) != gl.FRAMEBUFFER_COMPLETE: print("ERROR::FRAMEBUFFER:: Framebuffer is not complete!") gl.bindFramebuffer(gl.FRAMEBUFFER, 0) deferred_textures = { 'screenTexture': textureColorbuffer, 'normalTexture': gNormal, 'positionTexture': gPosition, 'lightTexture': gLight, 'depthTexture': gDepth } scene = Scene() camera = Camera(scene=scene) quad_scene = Scene() quad_camera = Camera(scene=quad_scene) light_scene = Scene() light_camera = Camera(scene=light_scene, clear=0) light_camera.clear = gl.COLOR_BUFFER_BIT light_camera.clear_color = (0.0, 0.0, 0.0, 0.0) light_camera.projection_matrix = camera.projection_matrix = Mat4.Perspective(45.0, framebuffer_width/framebuffer_height, 0.1, 100.0) light_camera.view_matrix = camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock()), 1.0, math.sin(time.clock())) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) # light volume model light_volume_data = objloader.load_obj(os.path.join("springtangent-model-files", "lightsphere", "lightsphere.obj"), calculate_normals=True) light_volume_model = Model.FromJSON(light_volume_data, PointLightInstanceData, PlateInstance) # other models armored_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "armored_plate.75.75.decimation_test7.obj"), calculate_normals=True) armored_plate_model = Model.FromJSON(armored_plate_data, InstanceData, PlateInstance) plane_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "plane_plate.75.75.decimation_test.00.obj"), calculate_normals=True) plane_plate_model = Model.FromJSON(plane_plate_data, InstanceData, PlateInstance) angled_plate_data = objloader.load_obj(os.path.join("springtangent-model-files", "angled_plate_plane.75.25..25.decimated.obj"), calculate_normals=True) angled_plate_model = Model.FromJSON(angled_plate_data, InstanceData, PlateInstance) angled_to_rounded_data = objloader.load_obj(os.path.join("springtangent-model-files", "angled_to_round_adapter.75.25.25", "angled_to_rounded_adapter.75.25.25.decimated.obj"), calculate_normals=True) angled_to_rounded_model = Model.FromJSON(angled_to_rounded_data, InstanceData, PlateInstance) models = [armored_plate_model, plane_plate_model, angled_plate_model, angled_to_rounded_model] deferred_shader = ShaderProgram(GBUFFER_VERT, GBUFFER_FRAG) deferred_light_shader = ShaderProgram(GBUFFER_LIGHT_VERT, GBUFFER_LIGHT_FRAG) for mesh in light_volume_model.meshes: mesh.shader = deferred_light_shader mesh.material = deferred_textures # replace the shader with the deferred shader in all meshes for model in models: for mesh in model.meshes: mesh.shader = deferred_shader # set up the data for the instances. # 30 x 30 array of tiles, which are randomly selected among the above models n = 30 instances = {} for i in range(n): for j in range(n): r = random.choice(range(4)) transform = Mat4.Translation(Vec3((i-n//2) * 2, 0.0, (j-n//2) * 2)) * Mat4.Rotation(math.pi/2.0 * r, Vec3(0.0, 1.0, 0.0)) instance = scene.add(random.choice(models), InstanceData(transform)) instance.r = r instances[i,j] = instance nlights = 400 for i in range(nlights): transform = Mat4.Translation(Vec3(random.uniform(-n/2, n/2), random.uniform(-1.0, 1.0), random.uniform(-n/2,n/2))) * Mat4.Scale(random.uniform(2.0, 10.0)) instance = light_scene.add(light_volume_model, PointLightInstanceData(transform, diffuse=Vec3(1.0, 1.0, 1.0), linear_attenuation=0.1, quadratic_attenutation=0.01)) # full screen rectangle class QuadVert(Structure): _fields_ = [ ('position', Vec2), ('texcoord', Vec2) ] quad_points = Vector(QuadVert) quad_points.append(QuadVert(Vec2(-1.0, 1.0), Vec2(0.0, 1.0))) quad_points.append(QuadVert(Vec2(-1.0, -1.0), Vec2(0.0, 0.0))) quad_points.append(QuadVert(Vec2( 1.0, -1.0), Vec2(1.0, 0.0))) quad_points.append(QuadVert(Vec2( 1.0, 1.0), Vec2(1.0, 1.0))) quad_indices = Vector(c_ubyte) quad_indices.append(0) quad_indices.append(1) quad_indices.append(2) quad_indices.append(0) quad_indices.append(2) quad_indices.append(3) quad_attribs = BufferAttribs(sizeof(QuadVert)) quad_attribs.add(BufferAttribs.POSITION_INDEX, 2, gl.FLOAT, gl.FALSE, QuadVert.position.offset) quad_attribs.add(BufferAttribs.TEXCOORD_INDEX, 2, gl.FLOAT, gl.FALSE, QuadVert.texcoord.offset) quad_shader = ShaderProgram(FRAMEBUFFER_VERT, FRAMEBUFFER_FRAG) quad_draw_call = DrawCall(gl.UNSIGNED_BYTE, gl.TRIANGLES, 0, len(quad_indices)) quad_material = deferred_textures quad_mesh = Mesh(quad_shader, quad_draw_call, quad_material) quad_model = Model(quad_indices.get_data(), quad_points.get_data(), quad_attribs, [quad_mesh], InstanceData, PlateInstance) # quad_instances = ModelInstances(quad_model) quad_instance = quad_scene.add(quad_model, InstanceData(Mat4.Identity())) gl.enable(gl.MULTISAMPLE) t0 = time.perf_counter() frames = 0 while not window.shouldClose(): glfw.pollEvents() t = time.perf_counter() # render scene to gbuffer gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer) gl.enable(gl.DEPTH_TEST) gl.depthFunc(gl.LEQUAL) gl.enable(gl.CULL_FACE) gl.cullFace(gl.BACK) # set up gbuffer for writing attachments = [gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1, gl.COLOR_ATTACHMENT2] gl.drawBuffers(attachments) framebuffer_width, framebuffer_height = window.getFramebufferSize() light_camera.view_matrix = camera.view_matrix = Mat4.LookAt(Vec3(math.cos(time.clock() * 0.1), 1.0, math.sin(time.clock() * 0.1)) *15.0, Vec3(0.0, 0.0, 0.0), Vec3(0.0, 1.0, 0.0)) viewport = (0, 0, framebuffer_width, framebuffer_height) camera.render_to_viewport(viewport) # render lights to gbuffer gl.drawBuffer(gl.COLOR_ATTACHMENT3) gl.depthFunc(gl.GREATER) gl.enable(gl.CULL_FACE) gl.cullFace(gl.FRONT) gl.enable(gl.BLEND) gl.blendEquation(gl.FUNC_ADD) gl.blendFunc(gl.ONE, gl.ONE) light_camera.render_to_viewport(viewport) err = gl.getError() if err: print("ERROR:", err) if TEST_ANIMATION: for i in range(n): for j in range(n): instance = instances[i,j] enabled = True # math.sin(i+j+t*10.0) > -0.8 # instance.set_enabled(enabled) if enabled: y = (math.sin(t+i) + math.cos(t+j)) * 0.25 transform = Mat4.Translation(Vec3((i-n//2) * 2, y, (j-n//2) * 2)) * Mat4.Rotation(math.pi/2.0 * instance.r, Vec3(0.0, 1.0, 0.0)) instance.model_matrix = transform # render quad with texture gl.bindFramebuffer(gl.FRAMEBUFFER, 0) gl.disable(gl.BLEND) gl.disable(gl.CULL_FACE) gl.disable(gl.DEPTH_TEST) # We don't care about depth information when rendering a single quad quad_camera.clear_color = (1.0, 1.0, 1.0, 1.0) quad_camera.clear = gl.COLOR_BUFFER_BIT quad_camera.render_to_viewport(viewport) scene.update_instances() quad_scene.update_instances() light_scene.update_instances() window.swapBuffers() frames += 1 if not frames % 100: print("FRAME RATE:", float(frames)/(time.perf_counter() - t0))