Пример #1
0
    def rotate_camera(self, event: wx.MouseEvent, orbit: bool = True) -> None:
        """Update rotate quat to reflect rotation controls.

        Args:
            event: A wx.MouseEvent representing an updated mouse position.
            orbit: Optional; True: uses orbit controls, False: uses arcball
                controls. Defaults to True.
        """
        if self._mouse_pos is None:
            self._mouse_pos = event.Position
            return

        last = self._mouse_pos
        cur = event.Position

        canvas_size = self._canvas.get_canvas_size()
        p1x = last.x * 2.0 / canvas_size.width - 1.0
        p1y = 1 - last.y * 2.0 / canvas_size.height
        p2x = cur.x * 2.0 / canvas_size.width - 1.0
        p2y = 1 - cur.y * 2.0 / canvas_size.height

        with self._rot_lock:
            if orbit:
                dx = p2y - p1y
                dy = p2x - p1x

                pitch = glm.angleAxis(dx, vec3(-1.0, 0.0, 0.0))
                yaw = glm.angleAxis(dy, vec3(0.0, 0.0, 1.0))
                self._rot_quat = pitch * self._rot_quat * yaw
            else:
                quat = arcball(p1x, p1y, p2x, p2y, self._dist / 250.0)
                self._rot_quat = quat * self._rot_quat
        self._mouse_pos = cur
Пример #2
0
 def __init__(self, poses:BonePoseSet) -> None:
     self.poses = poses
     self.animatable = Bezier2(Transformation())
     self.animatable.set_target( t1=1.,
                                 c0=Transformation( quaternion=glm.angleAxis(0.3,glm.vec3((1.,0.,0.)))),
                                 c1=Transformation( quaternion=glm.angleAxis(0.3,glm.vec3((1.,0.,0.)))),
                                 tgt=Transformation(quaternion=glm.angleAxis(0.3,glm.vec3((1.,0.,0.)))),
                                 callback=self.animation_callback )
     pass
Пример #3
0
 def animation_callback(self, t:float) -> None:
     t_sec = math.floor(t)
     t_int = int(t_sec)
     tgt = 1.0
     if (t_int&1): tgt=-1.
     self.animatable.set_target( t1=t_sec+1.,
                                 c0=Transformation(quaternion=glm.angleAxis(0.3,glm.vec3((1.,0.,0.)))),
                                 c1=Transformation(quaternion=glm.angleAxis(0.5,glm.vec3((0.,1.,0.)))),
                                 tgt=Transformation(quaternion=glm.angleAxis(tgt*0.3,glm.vec3((1.,0.,0.)))),
                                 callback=self.animation_callback )
     pass
Пример #4
0
def arcball(
    p1x: float, p1y: float, p2x: float, p2y: float, r: float) -> quat:
    """Return quaternion after arcball rotation.

    See https://www.khronos.org/opengl/wiki/Object_Mouse_Trackball for details.

    Args:
        p1x: Previous screen x-coordinate, normalized.
        p1y: Previous screen y-coordinate, normalized.
        p2x: Current screen x-coordinate, normalized.
        p2y: Current screen y-coordinate, normalized.
        r: Radius of arcball.
    """
    p1 = vec3(p1x, -project_to_sphere(r, p1x, p1y), p1y)
    p2 = vec3(p2x, -project_to_sphere(r, p2x, p2y), p2y)
    axis = glm.normalize(glm.cross(p1, p2))

    # calculate angle between p1 and p2
    d = map(lambda x, y: x - y, p1, p2)
    t = sqrt(sum(x * x for x in d)) / (2.0 * r)
    if t > 1.0:
        t = 1.0
    if t < -1.0:
        t = -1.0
    phi = 2.0 * asin(t)

    return glm.angleAxis(phi, axis)
Пример #5
0
    def rotation(self, orig, dest):
        identityQuat = glm.quat(1.0, 0.0, 0.0, 0.0)
        epsilon = 0.00001

        cosTheta = glm.dot(orig, dest)

        if cosTheta >= 1.0 - epsilon:
            #// orig and dest point in the same direction
            return identityQuat

        if cosTheta < -1.0 + epsilon:
            '''
            // special case when vectors in opposite directions :
            // there is no "ideal" rotation axis
            // So guess one; any will do as long as it's perpendicular to start
            // This implementation favors a rotation around the Up axis (Y),
            // since it's often what you want to do.
            '''
            rotationAxis = glm.cross(glm.vec3(0.0, 0.0, 1.0), orig)
            if glm.length(
                    rotationAxis
            ) < epsilon:  # // bad luck, they were parallel, try again!
                rotationAxis = glm.cross(glm.vec3(1.0, 0.0, 0.0), orig)

            rotationAxis = glm.normalize(rotationAxis)
            return glm.angleAxis(glm.pi(), rotationAxis)

        #// Implementation from Stan Melax's Game Programming Gems 1 article
        rotationAxis = glm.cross(orig, dest)

        s = math.sqrt((1.0 + cosTheta) * 2.0)
        invs = 1.0 / s

        return glm.quat(s * 0.5, rotationAxis.x * invs, rotationAxis.y * invs,
                        rotationAxis.z * invs)
Пример #6
0
class Transform:
    """Class represents a full 3d transformation including scale,
    translation and rotation."""

    position = glm.vec3(0, 0, 0)  # position as vec3
    scale = glm.vec3(1, 1, 1)  # scale as vec3
    orientation = glm.angleAxis(0, glm.vec3(0))  # orientation as a quaternion

    def __init__(self,
                 position=glm.vec3(0, 0, 0),
                 orientation=glm.angleAxis(0, glm.vec3(0)),
                 scale=glm.vec3(1, 1, 1)):
        """construct transform from an 4x4 transformation matrix"""
        self.position = position
        self.orientation = orientation
        self.scale = scale

    def __eq__(self, other):
        return self.position == other.position \
               and self.scale == other.scale \
               and self.orientation == other.orientation

    def __ne__(self, other):
        return self.position != other.position \
            or self.scale != other.scale \
            or self.orientation != other.orientation

    def mat4(self):
        return glm.translate(glm.mat4(1.0), self.position) * glm.scale(
            glm.mat4(1.0), self.scale) * glm.mat4_cast(self.orientation)

    def lookAt(self, target, up):
        """set orientation to look at the target, target and up are expected to be glm.vec3"""
        self.orientation = glm.quatLookAt(
            glm.normalize(target - self.position), up)
Пример #7
0
 def __init__(self,
              position=glm.vec3(0, 0, 0),
              orientation=glm.angleAxis(0, glm.vec3(0)),
              scale=glm.vec3(1, 1, 1)):
     """construct transform from an 4x4 transformation matrix"""
     self.position = position
     self.orientation = orientation
     self.scale = scale
Пример #8
0
    def _gyro_update_hook(self):
        if self.is_calibrating:
            if self.is_calibrating < time.time():
                self._set_calibration()
            else:
                for xyz in self.gyro:
                    self.calibration_acumulator += xyz
                self.calibration_acumulations += 3

        for gx, gy, gz in self.gyro_in_rad:
            # TODO: find out why 1/86 works, and not 1/60 or 1/(60*30)
            rotation \
                = angleAxis(gx * (-1/86), self.direction_X) \
                * angleAxis(gy * (-1/86), self.direction_Y) \
                * angleAxis(gz * (-1/86), self.direction_Z)

            self.direction_X *= rotation
            self.direction_Y *= rotation
            self.direction_Z *= rotation
            self.direction_Q *= rotation
Пример #9
0
def quaternion_of_rotation(rotation:glm.Mat3) -> glm.Quat:
    """
    Note that R . axis = axis
    RI = (R - I*999/1000)
    Then RI . axis = axis/1000
    Then det(RI) is going to be 1/1000 * at most 2 * at most 2
    And if na is perp to axis, then RI.na = R.na - 999/1000.na, which is perp to axis
    Then |R.na| < 2|na|
    If RI' . RI = I, then consider v' = RI' . v for some v=(a*axis + b*na0 + c*na1)
    (a'*axis + b'*na0 + c'*na1) = RI' . (a*axis + b*na0 + c*na1)
    Then RI . (a'*axis + b'*na0 + c'*na1) = (a*axis + b*na0 + c*na1)
    Then a'*RI.axis + b'*RI.na0 + c'*RI.na1 = a*axis + b*na0 + c*na1
    Then a'/1000*axis + b'*(R.na0-0.999.na0) + c'*(R.na1-0.999.na1) = a*axis + b*na0 + c*na1
    Then a = a'/1000, and
    -0.999b' + b'cos(angle) + c'sin(angle) = b, etc
    If we set |v| to be 1, then |v'| must be det(RI') = 1/det(RI) > 100
    If angle is not close to zero, then a' / b' >> 1
    This can be repeated:
    v' = normalize(RI' . v)
    v'' = normalize(RI' . v')
    v''' = normalize(RI' . v'') etc
    This gets closer and closer to the axis
    """
    rot_min_id   : glm.Mat3 = rotation - (0.99999 * glm.mat3()) # type: ignore
    rot_min_id_i : glm.Mat3 = glm.inverse(rot_min_id) # type: ignore
    for j in range(3):
        v = glm.vec3()
        v[j] = 1.
        for i in range(10):
            last_v = v
            rid_i_v : glm.Vec3 = rot_min_id_i * v # type: ignore
            v = glm.normalize(rid_i_v)
            pass
        axis = v
        dist2 = glm.length2(v - last_v) # type: ignore
        if dist2<0.00001: break
        pass

    w = glm.vec3([1.0,0,0])
    if axis[0]>0.9 or axis[0]<-0.9: w = glm.vec3([0,1.0,0])
    na0 : glm.Vec3 = glm.normalize(glm.cross(w, axis))
    na1 : glm.Vec3 = glm.cross(axis, na0)

    # Rotate w_perp_n around the axis of rotation by angle A
    na0_r : glm.Vec3 = rotation * na0 # type: ignore
    na1_r : glm.Vec3 = rotation * na1 # type: ignore

    # Get angle of rotation
    cos_angle =  glm.dot(na0, na0_r)
    sin_angle = -glm.dot(na0, na1_r)
    angle = math.atan2(sin_angle, cos_angle)

    # Set quaternion
    return glm.angleAxis(angle, axis)
Пример #10
0
 def animate(self, time: float) -> None:
     self.poses[0].transformation_reset()
     self.poses[1].transformation_reset()
     self.poses[2].transformation_reset()
     angle = math.sin(time * 0.2) * 0.3
     q = glm.quat()
     q = glm.angleAxis(time * 0.3, glm.vec3([0, 0, 1])) * q
     q = glm.angleAxis(1.85, glm.vec3([1, 0, 0])) * q
     self.poses[0].transform(
         Transformation(translation=(0., 0., 0.), quaternion=q))
     q = glm.quat()
     q = glm.angleAxis(angle * 4, glm.vec3([0, 0, 1])) * q
     self.poses[1].transform(
         Transformation(translation=(0., 0., -math.cos(4 * angle)),
                        quaternion=q))
     q = glm.quat()
     q = glm.angleAxis(angle * 4, glm.vec3([0, 0, 1])) * q
     self.poses[2].transform(
         Transformation(translation=(0., 0., +math.cos(4 * angle)),
                        quaternion=q))
     self.pose.update(int(time * 1E5))
     pass
Пример #11
0
 def rotateAroundPoint(self, angle, axis, pivot):
     rot = glm.angleAxis(angle, glm.normalize(axis))
     vec = self.position - self.origin - pivot
     self.setPosition(pivot + vec * rot + self.origin)
Пример #12
0
 def rotateAngleAxis(self, angle, axis):
     rot = glm.angleAxis(angle, glm.normalize(axis))
     self.setRotation(self.rotation * rot)
Пример #13
0
 def setRotationAngleAxis(self, angle, axis):
     rot = glm.angleAxis(angle, glm.normalize(axis))
     self.setRotation(rot)
Пример #14
0
def aa2q(angle, axis=glm.vec3(0, 0, 1)):
    return glm.angleAxis(angle, glm.normalize(axis))
Пример #15
0
 def rotate(self, axis:glm.Vec3, angle:float) -> None:
     q = glm.angleAxis(angle, axis)
     self.quaternion  = q * self.quaternion
     self.translation = q * self.translation # type: ignore
     pass
Пример #16
0
    def update(self, deltaTime):
        # movement in camera coordinates
        movement = self._currentTransform.orientation * (self._movementInput *
                                                         self.movementSpeedMod)

        if self.mode == 0:
            # rotate position around target
            # figure out where the old target is
            oldTarget = self._desiredTransform.position \
                        + self._desiredTransform.orientation * glm.vec3(0, 0, -1) * self._desiredTargetDistance

            # rotate the camera
            self._desiredTransform.orientation = glm.normalize(
                glm.angleAxis(self._rotationInput.x, self.worldUp) *
                self._desiredTransform.orientation *
                glm.angleAxis(self._rotationInput.y, glm.vec3(1, 0, 0)))

            # move so old target matches new target
            newTarget = self._desiredTransform.position \
                        + self._desiredTransform.orientation * glm.vec3(0, 0, -1) * self._desiredTargetDistance
            self._desiredTransform.position += oldTarget - newTarget

            # pan
            # zooming, make sure distance to the target does not become negative
            if self._desiredTargetDistance + self._movementInput.z > 0.01 * self.zoomSpeed:
                self._desiredTargetDistance += self._movementInput.z

            # now just apply  movement
            self._desiredTransform.position += movement

            # interpolate
            # interpolate distance to target
            self._currentTargetDistance = glm.mix(
                self._currentTargetDistance, self._desiredTargetDistance,
                glm.pow(deltaTime, self.movementSmoothing))

            # interpolate current target position
            desiredTarget = self._desiredTransform.position + self._desiredTransform.orientation * glm.vec3(
                0, 0, -1) * self._desiredTargetDistance
            oldActualTarget = self._currentTransform.position + self._currentTransform.orientation * glm.vec3(
                0, 0, -1) * self._currentTargetDistance
            oldActualTarget = glm.mix(
                oldActualTarget, desiredTarget,
                glm.pow(deltaTime, self.movementSmoothing))

            # interpolate orientation
            self._currentTransform.orientation = glm.slerp(
                self._currentTransform.orientation,
                self._desiredTransform.orientation,
                glm.pow(deltaTime, self.rotationSmoothing))

            # calculate proper position using difference that was created by rotation and moving the target
            newActualTarget = self._currentTransform.position + self._currentTransform.orientation * glm.vec3(
                0, 0, -1) * self._currentTargetDistance
            self._currentTransform.position += oldActualTarget - newActualTarget

        elif self.mode == 1:

            # movement
            self._desiredTransform.position += movement

            # rotation
            self._desiredTransform.orientation = glm.normalize(
                glm.angleAxis(self._rotationInput.x, self.worldUp) *
                self._desiredTransform.orientation *
                glm.angleAxis(self._rotationInput.y, glm.vec3(1, 0, 0)))

            # interpolate between transform and desired transform
            self._currentTransform.position = glm.mix(
                self._currentTransform.position,
                self._desiredTransform.position,
                glm.pow(deltaTime, self.movementSmoothing))
            self._currentTransform.orientation = glm.slerp(
                self._currentTransform.orientation,
                self._desiredTransform.orientation,
                glm.pow(deltaTime, self.rotationSmoothing))

        self.modelMatrix = self._currentTransform.mat4()
        self.viewMatrix = glm.inverse(self.modelMatrix)
        self._rotationInput.x = 0
        self._rotationInput.y = 0
        self._movementInput.x = 0
        self._movementInput.y = 0
        self._movementInput.z = 0
        self.movementSpeedMod = 1.0