def test(sigma, batch_size, seed, checkpoint_path): torch.manual_seed(seed) torch.cuda.manual_seed(seed) criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda().eval() # Load checkpoint if one exists model, iteration = load_checkpoint(checkpoint_path, model) model.eval() testset = Mel2Samp(data_config['testing_files'], data_config['segment_length'], data_config['filter_length'], data_config['hop_length'], data_config['win_length'], data_config['sampling_rate'], data_config['mel_fmin'], data_config['mel_fmax']) test_loader = DataLoader(testset, num_workers=1, shuffle=False, sampler=None, batch_size=batch_size, pin_memory=False, drop_last=True) with torch.no_grad(): val_loss = 0.0 for j, batch in enumerate(test_loader): mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) val_loss += loss.item() val_loss = val_loss / (j + 1) model.train() print("test loss: {}:\t{:.9f}".format(iteration, val_loss))
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard): torch.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cpu() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 trainset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=1, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cpu()) audio = torch.autograd.Variable(audio.cpu()) outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() print("{}:\t{:.9f}".format(iteration, reduced_loss)) if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch) if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, output_directory, epochs, init_lr, final_lr, sigma, epochs_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard): os.makedirs(output_directory, exist_ok=True) torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=init_lr) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists epoch_offset = 1 if checkpoint_path != "": model, optimizer, epoch_offset = load_checkpoint( checkpoint_path, model, optimizer) epoch_offset += 1 # next epoch is epoch_offset + 1 trainset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=8, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) model.train() # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs + 1): print(f'Epoch: {epoch}') adjust_learning_rate(optimizer, epoch, init_lr, final_lr, epochs) for i, batch in enumerate(tqdm.tqdm(train_loader)): optimizer.zero_grad() batch = model.pre_process(batch) outputs = model(batch) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss, i + 1 + len(train_loader) * epoch) if epoch % epochs_per_checkpoint == 0: if rank == 0: # Keep only one checkpoint last_chkpt = os.path.join( output_directory, f'waveglow_{epoch - epochs_per_checkpoint:06d}.pt') if os.path.exists(last_chkpt): os.remove(last_chkpt) checkpoint_path = os.path.join(output_directory, f'waveglow_{epoch:06d}.pt') save_checkpoint(model, optimizer, epoch, checkpoint_path)
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard, num_workers=4): print("num_workers", num_workers) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) # =====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) # =====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) scheduler = StepLR(optimizer, step_size=1, gamma=0.96) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 trainset = Mel2Samp(**data_config) evalset = Mel2Samp(**eval_data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None eval_sampler = DistributedSampler(evalset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=num_workers, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) eval_loader = DataLoader(evalset, num_workers=num_workers, shuffle=False, sampler=eval_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) epoch_offset = max(1, int(iteration / len(train_loader))) start_time = datetime.datetime.now() # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print('Epoch:', epoch, 'LR:', scheduler.get_lr()) elapsed = datetime.datetime.now() - start_time print("Epoch: [{}][els: {}] {}".format( datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S"), elapsed, epoch)) model.train() total_loss = 0. for i, batch in enumerate(train_loader): model.zero_grad() if waveglow_config["multi_speaker_config"]["use_multi_speaker"]: mel, audio, spk_embed_or_id = batch spk_embed_or_id = torch.autograd.Variable( spk_embed_or_id.cuda()) else: mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) if waveglow_config["multi_speaker_config"]["use_multi_speaker"]: outputs = model((mel, audio, spk_embed_or_id)) else: outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() total_loss += reduced_loss if i > 0 and i % 10 == 0: elapsed = datetime.datetime.now() - start_time print( "[{}][els: {}] epoch {},total steps{}, {}/{} steps:\t{:.9f}" .format( datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S"), elapsed, epoch, iteration, i, len(train_loader), reduced_loss)) if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch) if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 elapsed = datetime.datetime.now() - start_time print("[{}][els: {}] {} epoch :\tavg loss {:.9f}".format( datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S"), elapsed, epoch, total_loss / len(train_loader))) scheduler.step() eval.eval(eval_loader, model, criterion, num_gpus, start_time, epoch, waveglow_config["multi_speaker_config"]["use_multi_speaker"])
def train(num_gpus, rank, group_name, output_directory, log_directory, checkpoint_path): # Get device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') torch.manual_seed(hp.seed) torch.cuda.manual_seed(hp.seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(hp.sigma) model = WaveGlow().cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== learning_rate = hp.learning_rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if hp.fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path: model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 # Get dataset dataset = FastSpeechDataset() # Get training loader print("Get Training Loader") training_loader = DataLoader(dataset, batch_size=hp.batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True, num_workers=cpu_count()) if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if hp.with_tensorboard and rank == 0: logger = prepare_directories_and_logger(output_directory, log_directory) model = model.train() epoch_offset = max(0, int(iteration / len(training_loader))) beta = hp.batch_size print("Total Epochs: {}".format(hp.epochs)) print("Batch Size: {}".format(hp.batch_size)) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hp.epochs): print("Epoch: {}".format(epoch)) for i, data_of_batch in enumerate(training_loader): model.zero_grad() if not hp.pre_target: # Prepare Data src_seq = data_of_batch["texts"] src_pos = data_of_batch["pos"] mel_tgt = data_of_batch["mels"] src_seq = torch.from_numpy(src_seq).long().to(device) src_pos = torch.from_numpy(src_pos).long().to(device) mel_tgt = torch.from_numpy(mel_tgt).float().to(device) alignment_target = get_alignment(src_seq, tacotron2).float().to(device) # For Data Parallel mel_max_len = mel_tgt.size(1) else: # Prepare Data src_seq = data_of_batch["texts"] src_pos = data_of_batch["pos"] mel_tgt = data_of_batch["mels"] alignment_target = data_of_batch["alignment"] src_seq = torch.from_numpy(src_seq).long().to(device) src_pos = torch.from_numpy(src_pos).long().to(device) mel_tgt = torch.from_numpy(mel_tgt).float().to(device) alignment_target = torch.from_numpy( alignment_target).float().to(device) # For Data Parallel mel_max_len = mel_tgt.size(1) outputs = model(src_seq, src_pos, mel_tgt, mel_max_len, alignment_target) _, _, _, duration_predictor = outputs mel_tgt = mel_tgt.transpose(1, 2) max_like, dur_loss = criterion(outputs, alignment_target, mel_tgt) if beta > 1 and iteration % 10000 == 0: beta = beta // 2 loss = max_like + dur_loss if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if hp.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() #grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), hp.grad_clip_thresh) optimizer.step() print("{}:\t{:.9f}".format(iteration, reduced_loss)) if hp.with_tensorboard and rank == 0: logger.log_training(reduced_loss, dur_loss, learning_rate, iteration) if (iteration % hp.save_step == 0): if rank == 0: # logger.log_alignment(model, mel_predict, mel_tgt, iteration) checkpoint_path = "{}/TTSglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, output_directory, log_directory, checkpoint_path, hparams): torch.manual_seed(hparams.seed) torch.cuda.manual_seed(hparams.seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(hparams.sigma) model = WaveGlow(hparams).cuda() Taco2 = load_pretrained_taco('tacotron2.pt', hparams) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== learning_rate = hparams.learning_rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if hparams.fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path: model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 trainset = TextMelLoader(hparams.training_files, hparams) collate_fn = TextMelCollate() # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== batch_size = hparams.batch_size train_loader = DataLoader(trainset, num_workers=0, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) # Get shared output_directory readya if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if hparams.with_tensorboard and rank == 0: logger = prepare_directories_and_logger(output_directory, log_directory) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) print("Total Epochs: {}".format(hparams.epochs)) print("Batch Size: {}".format(hparams.batch_size)) print("learning rate: {}".format(hparams.learning_rate)) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hparams.epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() text_padded, input_lengths, mel_padded, max_len, output_lengths = parse_batch( batch) with torch.no_grad(): enc_outputs, alignments = Taco2( (text_padded, input_lengths, mel_padded, max_len, output_lengths)) # mel_padded = mel_padded.transpose(1, 2) # mel_padded = mel_padded / torch.abs(mel_padded).max().item() mel_pos = torch.arange(1000) mel_pos = to_gpu(mel_pos).long().unsqueeze(0) mel_pos = mel_pos.expand(hparams.batch_size, -1) src_pos = torch.arange(hparams.n_position) src_pos = to_gpu(src_pos).long().unsqueeze(0) src_pos = src_pos.expand(hparams.batch_size, -1) mel_padded = (mel_padded + 5) / 10 z, log_s_list, log_det_w_list, dec_enc_attn = model( mel_padded, enc_outputs, mel_pos, src_pos, input_lengths) outputs = (z, log_s_list, log_det_w_list, dec_enc_attn) loss = criterion(outputs, alignments) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if hparams.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), hparams.grad_clip_thresh) optimizer.step() print("{}:\t{:.9f}".format(iteration, reduced_loss)) if hparams.with_tensorboard and rank == 0: logger.log_training(reduced_loss, grad_norm, learning_rate, iteration) if (iteration % hparams.iters_per_checkpoint == 0): if rank == 0: mel_predict, test_attn = model.test( mel_padded, enc_outputs, mel_pos, src_pos, input_lengths) logger.log_alignment(model, dec_enc_attn, alignments, mel_padded, mel_predict, test_attn, iteration) checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard): torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 trainset = Mel2Samp(data_config['training_files'], data_config['segment_length'], data_config['filter_length'], data_config['hop_length'], data_config['win_length'], data_config['sampling_rate'], data_config['mel_fmin'], data_config['mel_fmax'], debug=False) if 'testing_files' in data_config: testset = Mel2Samp(data_config['testing_files'], data_config['segment_length'], data_config['filter_length'], data_config['hop_length'], data_config['win_length'], data_config['sampling_rate'], data_config['mel_fmin'], data_config['mel_fmax'], debug=True) else: testset = None # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=1, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) else: logger = None model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): start = time.perf_counter() model.zero_grad() print("train batch loaded, {} ({} of {})".format( iteration, i, len(train_loader))) mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() is_overflow = False if fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), 1.0) is_overflow = math.isnan(grad_norm) optimizer.step() duration = time.perf_counter() - start print( "train batch done, {} ({} of {}): {:.9f} (took {:.2f})".format( iteration, i, len(train_loader), reduced_loss, duration)) if logger: logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch) logger.add_scalar('duration', duration, i + len(train_loader) * epoch) if testset and not is_overflow and (iteration % iters_per_checkpoint == 0): if testset: validate(model, criterion, testset, iteration, batch_size, num_gpus, logger) if rank == 0: rotate_checkpoints(output_directory) checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard, num_workers=2): torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 # HACK: setup separate training and eval sets training_files = data_config['training_files'] eval_files = data_config['eval_files'] del data_config['training_files'] del data_config['eval_files'] data_config['audio_files'] = training_files trainset = Mel2Samp(**data_config) data_config['audio_files'] = eval_files evalset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None eval_sampler = DistributedSampler(evalset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== print("Creating dataloaders with " + str(num_workers) + " workers") train_loader = DataLoader(trainset, num_workers=num_workers, shuffle=True, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) eval_loader = DataLoader(evalset, num_workers=num_workers, shuffle=True, sampler=eval_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger_train = SummaryWriter( os.path.join(output_directory, 'logs', 'train')) logger_eval = SummaryWriter( os.path.join(output_directory, 'logs', 'eval')) epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): model.train() with tqdm(total=len(train_loader)) as train_pbar: for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() train_pbar.set_description( "Epoch {} Iter {} Loss {:.3f}".format( epoch, iteration, reduced_loss)) if with_tensorboard and rank == 0 and iteration % 10 == 0: logger_train.add_scalar('loss', reduced_loss, i + len(train_loader) * epoch) # adding logging for GPU utilization and memory usage gpu_memory_used, gpu_utilization = get_gpu_stats() k = 'gpu' + str(0) logger_train.add_scalar(k + '/memory', gpu_memory_used, iteration) logger_train.add_scalar(k + '/load', gpu_utilization, iteration) logger_train.flush() if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 train_pbar.update(1) # Eval model.eval() torch.cuda.empty_cache() with torch.no_grad(): tensorboard_mel, tensorboard_audio = None, None loss_accum = [] with tqdm(total=len(eval_loader)) as eval_pbar: for i, batch in enumerate(eval_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs).item() loss_accum.append(loss) eval_pbar.set_description("Epoch {} Eval {:.3f}".format( epoch, loss)) outputs = None # use the first batch for tensorboard audio samples if i == 0: tensorboard_mel = mel tensorboard_audio = audio eval_pbar.update(1) if with_tensorboard and rank == 0: loss_avg = statistics.mean(loss_accum) tqdm.write("Epoch {} Eval AVG {}".format(epoch, loss_avg)) logger_eval.add_scalar('loss', loss_avg, iteration) # log audio samples to tensorboard tensorboard_audio_generated = model.infer(tensorboard_mel) for i in range(0, 5): ta = tensorboard_audio[i].cpu().numpy() tag = tensorboard_audio_generated[i].cpu().numpy() logger_eval.add_audio("sample " + str(i) + "/orig", ta, epoch, sample_rate=data_config['sampling_rate']) logger_eval.add_audio("sample " + str(i) + "/gen", tag, epoch, sample_rate=data_config['sampling_rate']) logger_eval.flush()
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, checkpoint_path): torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Load checkpoint if one exists iteration = 0 print("checkpoint path", checkpoint_path) #model = warm_load_checkpoint(checkpoint_path, model) model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 trainset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=1, shuffle=True, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() loss.backward() optimizer.step() if (iteration % iters_per_checkpoint == 0): print("{}:\t{:.9f}".format(iteration, reduced_loss)) checkpoint_path = "{}/waveglow".format(output_directory) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, prj_name, run_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, grad_clip_thresh, checkpoint_path, pretrained_path, with_tensorboard, with_wandb): torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 if pretrained_path != "": model = load_pretrained(pretrained_path, model) trainset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: train_sampler = DistributedSampler(trainset) shuffle_at_dataloader = False else: train_sampler = None shuffle_at_dataloader = True # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle_at_dataloader, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): iter_start = time.perf_counter() float_epoch = float(iteration) / len(train_loader) model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss, etc = criterion(outputs) (z_L2_normalized, neg_log_s_total, neg_log_det_W_total) = etc if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() is_overflow = False if fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), grad_clip_thresh) is_overflow = math.isnan(grad_norm) if not is_overflow: clipped_grad_norm = get_clip_grad_norm( grad_norm, grad_clip_thresh) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), grad_clip_thresh) clipped_grad_norm = get_clip_grad_norm(grad_norm, grad_clip_thresh) optimizer.step() iter_duration = time.perf_counter() - iter_start print("{}:\t{:.9f}".format(iteration, reduced_loss)) if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch) if with_wandb and rank == 0: wandb.log( { 'iteration': iteration, 'epoch': float_epoch, 'iter_duration': iter_duration, 'training_loss': reduced_loss, 'training_loss/z_L2_normalized': z_L2_normalized, 'training_loss/neg_log_s_total': neg_log_s_total, 'training_loss/neg_log_det_W_total': neg_log_det_W_total, }, step=iteration) if not is_overflow: wandb.log( { 'grad_norm': grad_norm, 'clipped_grad_norm': clipped_grad_norm, }, step=iteration) if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/{}/{}/waveglow_{}".format( output_directory, prj_name, run_name, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard, weight_sharing, optimizer_type, dataloader_type): ws = weight_sharing torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer_type = optimizer_type.lower() if optimizer_type == "sgd": optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) elif optimizer_type == "adam": optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) else: print("Unsupported optimizer: %s. Aborting." % optimizer_type) return None if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 dataloader_type = dataloader_type.lower() if dataloader_type == "vanilla": trainset = Mel2Samp(**data_config) elif dataloader_type == "split": trainset = Mel2SampSplit(**data_config) else: print("Unsupported dataloader type: %s. Aborting." % dataloader_type) return None # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=1, shuffle=(num_gpus == 1), sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) name = "waveglow_ws%d_%s_%s_batch%d" % (ws, optimizer_type, dataloader_type, batch_size) if learning_rate != 1e-4: name = name + "_lr{:.0e}".format(learning_rate) if num_gpus > 1: name = name + "_x%d" % num_gpus if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join("./logs", name)) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== stime2 = None for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) stime = time() for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() if (iteration % 100 == 0): if not stime2 is None: tot_time2 = time() - stime2 print("{}:\t{:.9f}, time: {}".format( iteration, reduced_loss, int(tot_time2))) stime2 = time() if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch) if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/waveglow_{}_{}".format( output_directory, name, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 tot_time = time() - stime print("Epoch %d completed. Time: %d seconds" % (epoch, int(tot_time)))
def train(output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard): torch.manual_seed(seed) torch.cuda.manual_seed(seed) criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config, filter_length=data_config["filter_length"], hop_length=data_config["hop_length"]).cuda() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) trainset = Mel2Samp(**data_config) train_loader = DataLoader(trainset, num_workers=6, sampler=RandomSampler(0, 14), batch_size=batch_size, pin_memory=True, drop_last=False) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) model.train() model = model.cuda() s = time() reduced_loss = 0 for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) reduced_loss += loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() denominator = i % iters_per_checkpoint + 1 print("iteration:{}, loss:{:.4f}, time:{:.2f} " "".format(iteration + 1, reduced_loss / denominator, (time() - s) / denominator), end="\r") if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss / denominator, iteration + 1) if (iteration + 1) % iters_per_checkpoint == 0: s = time() reduced_loss = 0 if rank == 0: checkpoint_path = "{}/waveglow_it{}.pt".format( output_directory, iteration + 1) save_checkpoint(model, optimizer, learning_rate, iteration + 1, checkpoint_path) iteration += 1
def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard, warm_start): torch.manual_seed(seed) torch.cuda.manual_seed(seed) # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) # =====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) # =====END: ADDED FOR DISTRIBUTED====== optimizer = Over9000(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level='O1') else: amp = None # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer, warm_start) if fp16_run and not warm_start: amp.load_state_dict(torch.load(checkpoint_path)['amp']) iteration += 1 trainset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=16, shuffle=True, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, 'logs')) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.999, patience=250, cooldown=250, verbose=True, min_lr=1e-5) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = mel.cuda() audio = audio.cuda() outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), 1.0) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), 1.0) optimizer.step() if epoch > 1: scheduler.step(loss) print("{}:\t{:.9f}\t{:.9f}".format(iteration, reduced_loss, grad_norm)) if with_tensorboard and rank == 0: logger.add_scalar('training_loss', reduced_loss, i + len(train_loader) * epoch) if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, amp, iteration, checkpoint_path) iteration += 1
def train( num_gpus, rank, group_name, output_directory, epochs, learning_rate, sigma, iters_per_checkpoint, batch_size, seed, fp16_run, checkpoint_path, with_tensorboard, ): torch.manual_seed(seed) torch.cuda.manual_seed(seed) # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) # =====END: ADDED FOR DISTRIBUTED====== criterion = WaveGlowLoss(sigma) model = WaveGlow(**waveglow_config).cuda() # =====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) # =====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) if fp16_run: from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level="O1") # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 trainset = Mel2Samp(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader( trainset, num_workers=1, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True, ) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) if with_tensorboard and rank == 0: from tensorboardX import SummaryWriter logger = SummaryWriter(os.path.join(output_directory, "logs")) # fixed for visualization real_mels, real_audios = zip(*[trainset[i] for i in range(8)]) real_mel = torch.cat(real_mels, dim=-1) real_audio = torch.cat(real_audios, dim=0) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio)) loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced_loss = loss.item() if fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() print("{}:\t{:.9f}".format(iteration, reduced_loss)) if with_tensorboard and rank == 0: step = i + len(train_loader) * epoch logger.add_scalar("training_loss", reduced_loss, step) if step % 500 == 0: # select the first eight data sample model.eval() with torch.no_grad(): device = mel.device fake_audio = (model.infer( torch.stack(real_mels).to(device)).flatten( 0, 1).cpu()) model.train() fake_mel = trainset.get_mel(fake_audio) logger.add_image( "training_mel_real", plot_spectrogram_to_numpy(real_mel), step, dataformats="HWC", ) logger.add_audio( "training_audio_real", real_audio, step, 22050, ) logger.add_image( "training_mel_fake", plot_spectrogram_to_numpy(fake_mel), step, dataformats="HWC", ) logger.add_audio( "training_audio_fake", fake_audio, step, 22050, ) logger.flush() if iteration % iters_per_checkpoint == 0: if rank == 0: checkpoint_path = "{}/waveglow_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1