Пример #1
0
 def __init__(self, num_class: int, strides: List[int],
              anchors: List[List[int]], **kwargs):
     super(YOLOv3TargetGenerator, self).__init__(**kwargs)
     self._num_classes = num_class
     self._strides = strides
     self._anchors = anchors
     self._item_len = 4 + 1 + num_class
     self.bbox2center = BBoxCornerToCenter(axis=-1, split=True)
     self.bbox2corner = BBoxCenterToCorner(axis=-1, split=False)
Пример #2
0
    def __init__(self,
                 features,
                 scales,
                 ratios,
                 classes,
                 roi_size,
                 train_patterns,
                 stride=32,
                 rpn_channel=1024,
                 num_sample=128,
                 pos_iou_thresh=0.5,
                 neg_iou_thresh_high=0.5,
                 neg_iou_thresh_low=0.0,
                 pos_ratio=0.25,
                 nms_thresh=0.3,
                 nms_topk=400,
                 post_nms=100):

        #super from rcnn
        super(LHRCNN, self).__init__()
        self.stride = stride
        self._max_batch = 1  # currently only support batch size = 1
        self._max_roi = 100000  # maximum allowed ROIs
        self.num_class = len(classes)
        self._target_generator = set([RCNNTargetGenerator(self.num_class)])
        self.k, _ = roi_size
        self.CT = 10

        #--------RCNN parms--------
        self.train_patterns = train_patterns
        self.nms_thresh = nms_thresh
        self.nms_topk = nms_topk
        self.post_nms = post_nms

        #-------nn init------------
        with self.name_scope():
            #-------ligth head rcnn setting-------
            self.rpn = RPN(rpn_channel, stride, scales=scales, ratios=ratios)
            self.sampler = RCNNTargetSampler(num_sample, pos_iou_thresh,
                                             neg_iou_thresh_high,
                                             neg_iou_thresh_low, pos_ratio)
            self.group_conv = Group_Conv(10 * self.k * self.k)
            #-------rcnn setting---------------
            self.box_to_center = BBoxCornerToCenter()
            self.box_decoder = NormalizedBoxCenterDecoder()
            self.cls_decoder = MultiPerClassDecoder(num_class=self.num_class +
                                                    1)
            self.features = features
            self.share = nn.Dense(1024,
                                  activation='relu',
                                  weight_initializer=mx.init.Normal(0.01))
            self.clf = nn.Dense(self.num_class + 1,
                                weight_initializer=mx.init.Normal(0.01))
            self.reg = nn.Dense(self.num_class * 4,
                                weight_initializer=mx.init.Normal(0.01))
    def __init__(self, features, top_features, classes, short, max_size, train_patterns=None,
                nms_thresh=0.3, nms_topk=400, post_nms=100, roi_mode='align', roi_size=(14, 14), stride=16, clip=None,
                rpn_channel=1024, base_size=16, scales=(0.5, 1, 2), ratios=(8, 16, 32), alloc_size=(128, 128), rpn_nms_thresh=0.5,
                rpn_train_pre_nms=12000, rpn_train_post_nms=2000, rpn_test_pre_nms=6000, rpn_test_post_nms=300, rpn_min_size=16,
                num_sample=128, pos_iou_thresh=0.5, pos_ratio=0.25):
        super(FasterRCNN, self).__init__()
        self.classes = classes
        self.num_classes = len(classes)
        self.short = short
        self.max_size = max_size
        self.train_patterns = train_patterns
        self.nms_thresh = nms_thresh
        self.nms_topk = nms_topk
        self.post_nms = post_nms

        self._max_batch = 1
        self._num_sample = num_sample
        self._rpn_test_post_nms = rpn_test_post_nms
        # return cls_target, box_target, box_mask
        self._target_generater = {RCNNTargetGenerator(self.num_classes)}

        self._roi_mode = roi_mode.lower()
        self._roi_size = roi_size
        self._stride = stride

        with self.name_scope():
            self.features = features
            self.top_features = top_features
            self.global_avg_pool = nn.GlobalAvgPool2D()
            self.class_predictor = nn.Dense(
                self.num_classes+1, weight_initializer=mx.init.Normal(0.01))
            self.box_predictor = nn.Dense(
                self.num_classes*4, weight_initializer=mx.init.Normal(0.01))

            # reconstruct valid labels
            self.cls_decoder = MultiPerClassDecoder(num_class=self.num_classes+1)
            # (xmin, ymin, xmax, ymax) -> (x, y, h, w)
            self.box_to_center = BBoxCornerToCenter()
            # reconstructed bounding boxes
            self.box_decoder = NormalizedBoxCenterDecoder(clip=clip)
            # 
            self.rpn = RPN(
                channels=rpn_channel, stride=stride, base_size=base_size,
                scales=scales, ratios=ratios, alloc_size=alloc_size,
                clip=clip, nms_thresh=rpn_nms_thresh, train_pre_nms=rpn_train_pre_nms,
                train_post_nms=rpn_train_post_nms, test_pre_nms=rpn_test_pre_nms, test_post_nms=rpn_test_post_nms, min_size=rpn_min_size)

            self.sampler = RCNNTargetSampler(
                num_image=self._max_batch, num_proposal=rpn_train_post_nms,
                num_sample=num_sample, pos_iou_thresh=pos_iou_thresh, pos_ratio=pos_ratio)
Пример #4
0
    def __init__(self,
                 num_class: int,
                 strides: List[int],
                 anchors: List[List[int]],
                 **kwargs):
        super(YOLOv3TargetGenerator, self).__init__(**kwargs)
        self._num_classes = num_class
        self._strides = strides
        self._anchors = anchors
        self._item_len = 4 + 1 + num_class
        self.bbox2center = BBoxCornerToCenter(axis=-1, split=True)
        self.bbox2corner = BBoxCenterToCorner(axis=-1, split=False)

        alloc_size = (128, 128)
        grid_x = np.arange(alloc_size[1])
        grid_y = np.arange(alloc_size[0])
        grid_x, grid_y = np.meshgrid(grid_x, grid_y)
        offsets = np.concatenate((grid_x[:, :, np.newaxis], grid_y[:, :, np.newaxis]), axis=-1)
        offsets = np.expand_dims(np.expand_dims(offsets, axis=0), axis=0)
        self._offsets = nd.array(offsets)
Пример #5
0
 def __init__(self,
              backbone_cfg,
              neck_cfg,
              head_cfg,
              num_class: int,
              strides: List[int],
              anchors: List[List[List[int]]],
              **kwargs):
     if 'prefix' not in kwargs:
         kwargs['prefix'] = self.__class__.__name__.lower() + '_'
     super().__init__(**kwargs)
     backbone = build_backbone(backbone_cfg)
     neck = build_neck(neck_cfg)
     head = build_head(head_cfg)
     with self.name_scope():
         self.backbone = backbone
         self.neck = neck
         self.head = head
     self._num_classes = num_class
     self._strides = strides
     self._anchors = anchors
     self._item_len = 4 + 1 + num_class
     self.bbox2center = BBoxCornerToCenter(axis=-1, split=True)
     self.bbox2corner = BBoxCenterToCorner(axis=-1, split=False)
 def __init__(self, num_class, **kwargs):
     super(YOLOV3PrefetchTargetGenerator, self).__init__(**kwargs)
     self._num_class = num_class
     self.bbox2center = BBoxCornerToCenter(axis=-1, split=True)
     self.bbox2corner = BBoxCenterToCorner(axis=-1, split=False)