def test_lowrank_multivariate_gaussian(hybridize: bool) -> None:
    num_samples = 2000
    dim = 2
    rank = 1

    mu = np.arange(0, dim) / float(dim)
    D = np.eye(dim) * (np.arange(dim) / dim + 0.5)
    W = np.sqrt(np.ones((dim, rank)) * 0.2)
    Sigma = D + W.dot(W.transpose())

    distr = LowrankMultivariateGaussian(
        mu=mx.nd.array([mu]),
        D=mx.nd.array([np.diag(D)]),
        W=mx.nd.array([W]),
        dim=dim,
        rank=rank,
    )

    assert np.allclose(
        distr.variance[0].asnumpy(), Sigma, atol=0.1, rtol=0.1
    ), f"did not match: sigma = {Sigma}, sigma_hat = {distr.variance[0]}"

    samples = distr.sample(num_samples).squeeze().asnumpy()

    mu_hat, D_hat, W_hat = maximum_likelihood_estimate_sgd(
        LowrankMultivariateGaussianOutput(dim=dim,
                                          rank=rank,
                                          sigma_init=0.2,
                                          sigma_minimum=0.0),
        samples,
        learning_rate=PositiveFloat(0.01),
        num_epochs=PositiveInt(25),
        init_biases=
        None,  # todo we would need to rework biases a bit to use it in the multivariate case
        hybridize=hybridize,
    )

    distr = LowrankMultivariateGaussian(
        dim=dim,
        rank=rank,
        mu=mx.nd.array([mu_hat]),
        D=mx.nd.array([D_hat]),
        W=mx.nd.array([W_hat]),
    )

    Sigma_hat = distr.variance.asnumpy()

    assert np.allclose(
        mu_hat, mu, atol=0.2,
        rtol=0.1), f"mu did not match: mu = {mu}, mu_hat = {mu_hat}"

    assert np.allclose(
        Sigma_hat, Sigma, atol=0.1, rtol=0.1
    ), f"sigma did not match: sigma = {Sigma}, sigma_hat = {Sigma_hat}"
Пример #2
0
    def __init__(
        self,
        freq: str,
        prediction_length: int,
        target_dim: int,
        S: np.ndarray,
        num_samples_for_loss: int = 200,
        likelihood_weight: float = 0.0,
        CRPS_weight: float = 1.0,
        sample_LH: bool = False,
        coherent_train_samples: bool = True,
        coherent_pred_samples: bool = True,
        warmstart_epoch_frac: float = 0.0,
        seq_axis: List[int] = None,
        assert_reconciliation: bool = False,
        trainer: Trainer = Trainer(),
        context_length: Optional[int] = None,
        num_layers: int = 2,
        num_cells: int = 40,
        cell_type: str = "lstm",
        num_parallel_samples: int = 100,
        dropout_rate: float = 0.1,
        cardinality: List[int] = [1],
        embedding_dimension: int = 5,
        scaling: bool = True,
        pick_incomplete: bool = False,
        lags_seq: Optional[List[int]] = None,
        time_features: Optional[List[TimeFeature]] = None,
        batch_size: int = 32,
        reconciliation_tol: float = 1e-2,
        **kwargs,
    ) -> None:

        # This implementation only works for multivariate Gaussian with diagonal covariance and no transformation.
        # Fixing them here upfront. If the method is exteneded, then these can be passed as arguments of the estimator.
        rank = 0
        distr_output = LowrankMultivariateGaussianOutput(
            dim=target_dim, rank=rank
        )
        use_marginal_transformation = False
        conditioning_length = 0

        super().__init__(
            freq=freq,
            prediction_length=prediction_length,
            target_dim=target_dim,
            context_length=context_length,
            num_layers=num_layers,
            num_cells=num_cells,
            cell_type=cell_type,
            num_parallel_samples=num_parallel_samples,
            dropout_rate=dropout_rate,
            cardinality=cardinality,
            embedding_dimension=embedding_dimension,
            distr_output=distr_output,
            rank=rank,
            scaling=scaling,
            pick_incomplete=pick_incomplete,
            lags_seq=lags_seq,
            time_features=time_features,
            conditioning_length=conditioning_length,
            use_marginal_transformation=use_marginal_transformation,
            trainer=trainer,
            batch_size=batch_size,
            **kwargs,
        )

        # Assert that projection is *not* being done only during training
        assert coherent_pred_samples or (
            not coherent_train_samples
        ), "Cannot project only during training (and not during prediction)"

        A = constraint_mat(S)
        M = null_space_projection_mat(A)
        self.M, self.A = mx.nd.array(M), mx.nd.array(A)
        self.num_samples_for_loss = num_samples_for_loss
        self.likelihood_weight = likelihood_weight
        self.CRPS_weight = CRPS_weight
        self.assert_reconciliation = assert_reconciliation
        self.coherent_train_samples = coherent_train_samples
        self.coherent_pred_samples = coherent_pred_samples
        self.warmstart_epoch_frac = warmstart_epoch_frac
        self.sample_LH = sample_LH
        self.seq_axis = seq_axis
        self.reconciliation_tol = reconciliation_tol
Пример #3
0
        test=grouper_test(test_ds),
    )


dataset = load_multivariate_constant_dataset()
target_dim = int(dataset.metadata.feat_static_cat[0].cardinality)
metadata = dataset.metadata
estimator = DeepVAREstimator


@pytest.mark.parametrize(
    "distr_output, num_batches_per_epoch, Estimator, hybridize, "
    "use_marginal_transformation",
    [
        (
            LowrankMultivariateGaussianOutput(dim=target_dim, rank=2),
            10,
            estimator,
            True,
            True,
        ),
        (
            LowrankMultivariateGaussianOutput(dim=target_dim, rank=2),
            10,
            estimator,
            False,
            False,
        ),
        (
            LowrankMultivariateGaussianOutput(dim=target_dim, rank=2),
            10,
Пример #4
0
    def __init__(
        self,
        freq: str,
        prediction_length: int,
        target_dim: int,
        trainer: Trainer = Trainer(),
        context_length: Optional[int] = None,
        num_layers: int = 2,
        num_cells: int = 40,
        cell_type: str = "lstm",
        num_parallel_samples: int = 100,
        dropout_rate: float = 0.1,
        cardinality: List[int] = [1],
        embedding_dimension: int = 5,
        distr_output: Optional[DistributionOutput] = None,
        rank: Optional[int] = 5,
        scaling: bool = True,
        pick_incomplete: bool = False,
        lags_seq: Optional[List[int]] = None,
        time_features: Optional[List[TimeFeature]] = None,
        conditioning_length: int = 200,
        use_marginal_transformation=False,
        batch_size: int = 32,
        **kwargs,
    ) -> None:
        super().__init__(trainer=trainer, batch_size=batch_size, **kwargs)

        assert (prediction_length >
                0), "The value of `prediction_length` should be > 0"
        assert (context_length is None or context_length > 0
                ), "The value of `context_length` should be > 0"
        assert num_layers > 0, "The value of `num_layers` should be > 0"
        assert num_cells > 0, "The value of `num_cells` should be > 0"
        assert (num_parallel_samples >
                0), "The value of `num_eval_samples` should be > 0"
        assert dropout_rate >= 0, "The value of `dropout_rate` should be >= 0"
        assert all([c > 0 for c in cardinality
                    ]), "Elements of `cardinality` should be > 0"
        assert (embedding_dimension >
                0), "The value of `embedding_dimension` should be > 0"

        self.freq = freq
        self.context_length = (context_length if context_length is not None
                               else prediction_length)

        if distr_output is not None:
            self.distr_output = distr_output
        else:
            self.distr_output = LowrankMultivariateGaussianOutput(
                dim=target_dim, rank=rank)

        self.prediction_length = prediction_length
        self.target_dim = target_dim
        self.num_layers = num_layers
        self.num_cells = num_cells
        self.cell_type = cell_type
        self.num_parallel_samples = num_parallel_samples
        self.dropout_rate = dropout_rate
        self.cardinality = cardinality
        self.embedding_dimension = embedding_dimension
        self.conditioning_length = conditioning_length
        self.use_marginal_transformation = use_marginal_transformation

        self.lags_seq = (lags_seq if lags_seq is not None else
                         get_lags_for_frequency(freq_str=freq))

        self.time_features = (time_features if time_features is not None else
                              time_features_from_frequency_str(self.freq))

        self.history_length = self.context_length + max(self.lags_seq)
        self.pick_incomplete = pick_incomplete
        self.scaling = scaling

        if self.use_marginal_transformation:
            self.output_transform: Optional[
                Callable] = cdf_to_gaussian_forward_transform
        else:
            self.output_transform = None
     mx.nd.random.gamma(shape=(3, 4, 5, 6)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4, 5),
     (),
 ),
 (
     MultivariateGaussianOutput(dim=5),
     mx.nd.random.normal(shape=(3, 4, 10)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4),
     (5, ),
 ),
 (
     LowrankMultivariateGaussianOutput(dim=5, rank=4),
     mx.nd.random.normal(shape=(3, 4, 10)),
     [None, mx.nd.ones(shape=(3, 4, 5))],
     [None, mx.nd.ones(shape=(3, 4, 5))],
     (3, 4),
     (5, ),
 ),
 (
     DirichletOutput(dim=5),
     mx.nd.random.gamma(shape=(3, 4, 5)),
     [None],
     [None],
     (3, 4),
     (5, ),
 ),
 (
def test_empirical_distribution(hybridize: bool) -> None:
    r"""
    This verifies if the loss implemented by `EmpiricalDistribution` is correct.
    This is done by recovering parameters of a parametric distribution not by maximizing likelihood but by
    optimizing CRPS loss on the Monte Carlo samples drawn from the underlying parametric distribution.

    More precisely, given observations `obs` drawn from the true distribution p(x; \theta^*), we solve

                \theta_hat = \argmax_{\theta} CRPS(obs, {x}_i)
                             subject to:      x_i ~ p(x; \theta)

    and verify if \theta^* and \theta_hat agree.

    This test uses Multivariate Gaussian with diagonal covariance. Once multivariate CRPS is implemented in
    `EmpiricalDistribution` one could use `LowrankMultivariateGaussian` as well. Any univariate distribution whose
    `sample_rep` is differentiable can also be used in this test.

    """
    num_obs = 2000
    dim = 2

    # Multivariate CRPS is not implemented in `EmpiricalDistribution`.
    rank = 0
    W = None

    mu = np.arange(0, dim) / float(dim)
    D = np.eye(dim) * (np.arange(dim) / dim + 0.5)
    Sigma = D

    distr = LowrankMultivariateGaussian(
        mu=mx.nd.array([mu]),
        D=mx.nd.array([np.diag(D)]),
        W=W,
        dim=dim,
        rank=rank,
    )

    obs = distr.sample(num_obs).squeeze().asnumpy()

    theta_hat = maximum_likelihood_estimate_sgd(
        EmpiricalDistributionOutput(
            num_samples=200,
            distr_output=LowrankMultivariateGaussianOutput(dim=dim,
                                                           rank=rank,
                                                           sigma_init=0.2,
                                                           sigma_minimum=0.0),
        ),
        obs,
        learning_rate=PositiveFloat(0.01),
        num_epochs=PositiveInt(25),
        init_biases=
        None,  # todo we would need to rework biases a bit to use it in the multivariate case
        hybridize=hybridize,
    )

    mu_hat, D_hat = theta_hat
    W_hat = None

    distr = LowrankMultivariateGaussian(
        dim=dim,
        rank=rank,
        mu=mx.nd.array([mu_hat]),
        D=mx.nd.array([D_hat]),
        W=W_hat,
    )

    Sigma_hat = distr.variance.asnumpy()

    print(mu_hat, Sigma_hat)

    assert np.allclose(
        mu_hat, mu, atol=0.2,
        rtol=0.1), f"mu did not match: mu = {mu}, mu_hat = {mu_hat}"

    assert np.allclose(
        Sigma_hat, Sigma, atol=0.1, rtol=0.1
    ), f"sigma did not match: sigma = {Sigma}, sigma_hat = {Sigma_hat}"