Пример #1
0
def test_chain():
    chain = transform.Chain(trans=[
        transform.AddTimeFeatures(
            start_field=FieldName.START,
            target_field=FieldName.TARGET,
            output_field="time_feat",
            time_features=[
                time_feature.DayOfWeek(),
                time_feature.DayOfMonth(),
                time_feature.MonthOfYear(),
            ],
            pred_length=10,
        ),
        transform.AddAgeFeature(
            target_field=FieldName.TARGET,
            output_field="age",
            pred_length=10,
            log_scale=True,
        ),
        transform.AddObservedValuesIndicator(target_field=FieldName.TARGET,
                                             output_field="observed_values"),
    ])

    assert equals(chain, clone(chain))
    assert not equals(chain, clone(chain, {"trans": []}))

    another_chain = transform.Chain(trans=[
        transform.AddTimeFeatures(
            start_field=FieldName.START,
            target_field=FieldName.TARGET,
            output_field="time_feat",
            time_features=[
                time_feature.DayOfWeek(),
                time_feature.DayOfMonth(),
                time_feature.MonthOfYear(),
            ],
            pred_length=10,
        ),
        transform.AddAgeFeature(
            target_field=FieldName.TARGET,
            output_field="age",
            pred_length=10,
            log_scale=False,
        ),
        transform.AddObservedValuesIndicator(target_field=FieldName.TARGET,
                                             output_field="observed_values"),
    ])
    assert not equals(chain, another_chain)
Пример #2
0
def test_Transformation():
    train_length = 100
    ds = gluonts.dataset.common.ListDataset(
        [{"start": "2012-01-01", "target": [0.2] * train_length}], freq="1D"
    )

    pred_length = 10

    t = transform.Chain(
        trans=[
            transform.AddTimeFeatures(
                start_field=transform.FieldName.START,
                target_field=transform.FieldName.TARGET,
                output_field="time_feat",
                time_features=[
                    time_feature.DayOfWeek(),
                    time_feature.DayOfMonth(),
                    time_feature.MonthOfYear(),
                ],
                pred_length=pred_length,
            ),
            transform.AddAgeFeature(
                target_field=transform.FieldName.TARGET,
                output_field="age",
                pred_length=pred_length,
                log_scale=True,
            ),
            transform.AddObservedValuesIndicator(
                target_field=transform.FieldName.TARGET,
                output_field="observed_values",
            ),
            transform.VstackFeatures(
                output_field="dynamic_feat",
                input_fields=["age", "time_feat"],
                drop_inputs=True,
            ),
            transform.InstanceSplitter(
                target_field=transform.FieldName.TARGET,
                is_pad_field=transform.FieldName.IS_PAD,
                start_field=transform.FieldName.START,
                forecast_start_field=transform.FieldName.FORECAST_START,
                train_sampler=transform.ExpectedNumInstanceSampler(
                    num_instances=4
                ),
                past_length=train_length,
                future_length=pred_length,
                time_series_fields=["dynamic_feat", "observed_values"],
            ),
        ]
    )

    assert_serializable(t)

    for u in t(iter(ds), is_train=True):
        print(u)
Пример #3
0
def test_forking_sequence_with_features(is_train) -> None:
    def make_dataset(N, train_length):
        # generates 2 ** N - 1 timeseries with constant increasing values
        n = 2 ** N - 1

        targets = np.arange(n * train_length).reshape((n, train_length))

        return ListDataset(
            [
                {"start": "2012-01-01", "target": targets[i, :]}
                for i in range(n)
            ],
            freq="D",
        )

    ds = make_dataset(1, 20)

    trans = transform.Chain(
        trans=[
            transform.AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_AGE,
                pred_length=10,
            ),
            transform.AddTimeFeatures(
                start_field=FieldName.START,
                target_field=FieldName.TARGET,
                output_field=FieldName.FEAT_TIME,
                time_features=time_features_from_frequency_str("D"),
                pred_length=10,
            ),
            ForkingSequenceSplitter(
                train_sampler=TSplitSampler(),
                enc_len=5,
                dec_len=3,
                encoder_series_fields=[
                    FieldName.FEAT_AGE,
                    FieldName.FEAT_TIME,
                ],
                decoder_series_fields=[FieldName.FEAT_TIME],
            ),
        ]
    )

    out = trans(iter(ds), is_train=is_train)
    transformed_data = next(iter(out))

    assert transformed_data["past_target"].shape == (5, 1)
    assert transformed_data["past_feat_dynamic_age"].shape == (5, 1)
    assert transformed_data["past_time_feat"].shape == (5, 3)
    assert transformed_data["future_time_feat"].shape == (5, 3, 3)

    if is_train:
        assert transformed_data["future_target"].shape == (5, 3)
def test_forking_sequence_splitter() -> None:
    len_ts = 20
    ds = make_dataset(1, len_ts)
    enc_len = 5
    dec_len = 3

    trans = transform.Chain(
        [
            transform.AddAgeFeature(
                target_field=FieldName.TARGET,
                output_field="age",
                pred_length=dec_len,
            ),
            ForkingSequenceSplitter(
                train_sampler=TSplitSampler(),
                enc_len=enc_len,
                dec_len=dec_len,
                encoder_series_fields=["age"],
            ),
        ]
    )

    out = trans(ds, is_train=True)
    transformed_data = next(iter(out))

    future_target = np.array(
        [
            [13.0, 14.0, 15.0],
            [14.0, 15.0, 16.0],
            [15.0, 16.0, 17.0],
            [16.0, 17.0, 18.0],
            [17.0, 18.0, 19.0],
        ]
    )
    assert (
        np.linalg.norm(future_target - transformed_data["future_target"])
        < 1e-5
    ), "the forking sequence target should be computed correctly."

    age = np.log10(2.0 + np.arange(len_ts))
    assert (
        np.linalg.norm(
            age[-(enc_len + dec_len) : -dec_len]
            - transformed_data["past_age"].flatten()
        )
        < 1e-5
    ), "the forking sequence past feature should be computed correctly."
Пример #5
0
def test_add_method():
    chain = transform.AddTimeFeatures(
        start_field=FieldName.START,
        target_field=FieldName.TARGET,
        output_field="time_feat",
        time_features=[
            time_feature.DayOfWeek(),
            time_feature.DayOfMonth(),
            time_feature.MonthOfYear(),
        ],
        pred_length=24,
    ) + transform.AddAgeFeature(
        target_field=FieldName.TARGET,
        output_field="age",
        pred_length=24,
        log_scale=True,
    )

    assert isinstance(chain, transform.Chain)
Пример #6
0
def test_AddAgeFeatures(start, target, is_train: bool):
    pred_length = 13
    t = transform.AddAgeFeature(
        pred_length=pred_length,
        target_field=FieldName.TARGET,
        output_field="age",
        log_scale=True,
    )

    assert_serializable(t)

    data = {"start": start, "target": target}
    out = t.map_transform(data, is_train=is_train)
    expected_length = len(target) + (0 if is_train else pred_length)
    assert out["age"].shape[-1] == expected_length
    assert np.allclose(
        out["age"],
        np.log10(2.0 + np.arange(expected_length)).reshape(
            (1, expected_length)),
    )
Пример #7
0
def test_multi_dim_transformation(is_train):
    train_length = 10

    first_dim = np.arange(1, 11, 1).tolist()
    first_dim[-1] = "NaN"

    second_dim = np.arange(11, 21, 1).tolist()
    second_dim[0] = "NaN"

    ds = gluonts.dataset.common.ListDataset(
        data_iter=[{"start": "2012-01-01", "target": [first_dim, second_dim]}],
        freq="1D",
        one_dim_target=False,
    )
    pred_length = 2

    # Looks weird - but this is necessary to assert the nan entries correctly.
    first_dim[-1] = np.nan
    second_dim[0] = np.nan

    t = transform.Chain(
        trans=[
            transform.AddTimeFeatures(
                start_field=transform.FieldName.START,
                target_field=transform.FieldName.TARGET,
                output_field="time_feat",
                time_features=[
                    time_feature.DayOfWeek(),
                    time_feature.DayOfMonth(),
                    time_feature.MonthOfYear(),
                ],
                pred_length=pred_length,
            ),
            transform.AddAgeFeature(
                target_field=transform.FieldName.TARGET,
                output_field="age",
                pred_length=pred_length,
                log_scale=True,
            ),
            transform.AddObservedValuesIndicator(
                target_field=transform.FieldName.TARGET,
                output_field="observed_values",
                convert_nans=False,
            ),
            transform.VstackFeatures(
                output_field="dynamic_feat",
                input_fields=["age", "time_feat"],
                drop_inputs=True,
            ),
            transform.InstanceSplitter(
                target_field=transform.FieldName.TARGET,
                is_pad_field=transform.FieldName.IS_PAD,
                start_field=transform.FieldName.START,
                forecast_start_field=transform.FieldName.FORECAST_START,
                train_sampler=transform.ExpectedNumInstanceSampler(
                    num_instances=4
                ),
                past_length=train_length,
                future_length=pred_length,
                time_series_fields=["dynamic_feat", "observed_values"],
                output_NTC=False,
            ),
        ]
    )

    assert_serializable(t)

    if is_train:
        for u in t(iter(ds), is_train=True):
            assert_shape(u["past_target"], (2, 10))
            assert_shape(u["past_dynamic_feat"], (4, 10))
            assert_shape(u["past_observed_values"], (2, 10))
            assert_shape(u["future_target"], (2, 2))

            assert_padded_array(
                u["past_observed_values"],
                np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]),
                u["past_is_pad"],
            )
            assert_padded_array(
                u["past_target"],
                np.array([first_dim, second_dim]),
                u["past_is_pad"],
            )
    else:
        for u in t(iter(ds), is_train=False):
            assert_shape(u["past_target"], (2, 10))
            assert_shape(u["past_dynamic_feat"], (4, 10))
            assert_shape(u["past_observed_values"], (2, 10))
            assert_shape(u["future_target"], (2, 0))

            assert_padded_array(
                u["past_observed_values"],
                np.array([[1.0] * 9 + [0.0], [0.0] + [1.0] * 9]),
                u["past_is_pad"],
            )
            assert_padded_array(
                u["past_target"],
                np.array([first_dim, second_dim]),
                u["past_is_pad"],
            )
Пример #8
0
def test_forking_sequence_splitter() -> None:
    def make_dataset(N, train_length):
        # generates 2 ** N - 1 timeseries with constant increasing values
        n = 2 ** N - 1

        targets = np.arange(n * train_length).reshape((n, train_length))

        return ListDataset(
            [
                {"start": "2012-01-01", "target": targets[i, :]}
                for i in range(n)
            ],
            freq="D",
        )

    ds = make_dataset(1, 20)

    trans = transform.Chain(
        trans=[
            transform.AddAgeFeature(
                target_field=transform.FieldName.TARGET,
                output_field="age",
                pred_length=10,
            ),
            ForkingSequenceSplitter(
                train_sampler=TestSplitSampler(),
                time_series_fields=["age"],
                enc_len=5,
                dec_len=3,
            ),
        ]
    )

    out = trans(iter(ds), is_train=True)
    transformed_data = next(iter(out))

    future_target = np.array(
        [
            [13.0, 14.0, 15.0],
            [14.0, 15.0, 16.0],
            [15.0, 16.0, 17.0],
            [16.0, 17.0, 18.0],
            [17.0, 18.0, 19.0],
        ]
    )

    assert (
        np.linalg.norm(future_target - transformed_data["future_target"])
        < 1e-5
    ), "the forking sequence target should be computed correctly."

    trans_oob = transform.Chain(
        trans=[
            transform.AddAgeFeature(
                target_field=transform.FieldName.TARGET,
                output_field="age",
                pred_length=10,
            ),
            ForkingSequenceSplitter(
                train_sampler=TestSplitSampler(),
                time_series_fields=["age"],
                enc_len=20,
                dec_len=20,
            ),
        ]
    )

    transformed_data_oob = next(iter(trans_oob(iter(ds), is_train=True)))

    assert (
        np.sum(transformed_data_oob["future_target"]) - np.sum(np.arange(20))
        < 1e-5
    ), "the forking sequence target should be computed correctly."