def signcrypt(self, Reciever, params, m):
     #	R = g ** w mod p, w <-- Zq
     w, R_value = random_pick(params.p, params.q, params.g)
     #	h1_R = H1(ID_R, X_R, Y_R) <-- Zq
     h1_R = H1_hash(Reciever.uid, Reciever.X_u, Reciever.Y_u,
                    bit_length(params.q))
     #	T = (X_R * Y_R * (p_pub**h1_R)) ** w mod p
     T_value = T_compute(Reciever.X_u, Reciever.Y_u, params.p_pub, h1_R, w,
                         params.p)
     #	C = m * T mod p
     C_value = []
     if bit_length(m) < bit_length(params.p):
         C_value.append(t_mod(m * T_value, params.p))
     else:
         m_list = m2list(m, bit_length(params.p))
         for x in range(len(m_list)):
             C_value.append(t_mod(m_list[x] * T_value, params.p))
     #	h2 = H2(ID_S, T, m, C) <-- Zq
     h2_value = H2_hash(self.uid, T_value, m, C_value[0],
                        bit_length(params.q))
     #	(x_S + y_S) ** -1 mod q
     x_y_invert = invert(self.x_u + self.y_u, params.q)
     #	S = h2 * w * (x_S + y_S) ** -1 mod q
     S_value = t_mod(h2_value * w * x_y_invert, params.q)
     #	signcryption_text = (R, C, S)
     Signcryption_text = (R_value, C_value, S_value)
     return Signcryption_text
Пример #2
0
class RSA:
  #RSA的应用类
  def keygen(self, l=2048, s=True):
    while True:
      p = gmpy2.mpz(Crypto.Util.number.getPrime(l))
      q = gmpy2.mpz(Crypto.Util.number.getPrime(l))
      n = gmpy2.mpz(p * q)
      et = (p - 1) * (q - 1)
      if s == True:
        e = 2**16+1 # << - this is better
      else:
        e = 3  # << - this is bad
      d = gmpy2.invert(e, et)
      if d != None:
        break

    return (e, n), (d, n)

  def encrypt(self, m, (e,n)):
    #所有加密的m都是用string
    m=s2i(m)
    len_n = (gmpy2.bit_length(n))-1
    len_m = gmpy2.bit_length(m)-1
    if len_n < len_m:
      pass#return [i2s(pow(s2i(m), e, n))]
    else:
      cs=gmpy2.powmod(m,e,n)
      return cs
Пример #3
0
 def unsigncrypt(self, Sender, params, Signcryption_text):
     #	get R, C, S
     R_value = Signcryption_text[0]
     C_value = Signcryption_text[1]
     S_value = Signcryption_text[2]
     #	T' = R ** (x_R + y_R) mod p	, where "un" represent the symbol '
     T_value_un = powmod(R_value, t_mod(self.x_u + self.y_u, params.q),
                         params.p)
     #	T' ** -1 mod p
     T_value_un_invert = invert(T_value_un, params.p)
     #	m' = (T' ** -1) * C mod p
     m_un = t_mod(T_value_un_invert * C_value, params.p)
     #	h2' = H2(ID_S, T', m', C) <-- Zq
     h2_value_un = H2_hash(Sender.uid, T_value_un, m_un, C_value,
                           bit_length(params.q))
     #	h1_S = H1(ID_S, X_S, Y_S) <-- Zq
     h1_S = H1_hash(Sender.uid, Sender.X_u, Sender.Y_u,
                    bit_length(params.q))
     #	verify R ** h2' mod p == (X_S * Y_S * (p_pub ** h1_S)) ** S mod p
     #	if return true, then return m' as the plain-text
     left_value = powmod(R_value, h2_value_un, params.p)
     right_value = T_compute(Sender.X_u, Sender.Y_u, params.p_pub, h1_S,
                             S_value, params.p)
     if left_value == right_value:
         return m_un
Пример #4
0
    def modulus (self, A):
        
        B = np.copy(A)
        p1 = B.view('uint8')       
        p = p1[::-1]
        p = self.remove_0(p)
        Pl = self.Polynomial.view('uint8')
        Polynomial = Pl[::-1]
        Polynomial = self.remove_0(Polynomial)
        pf_bit_pos = gmpy2.bit_length(int(Polynomial[0]))
       
        p1 = ( Polynomial >> (pf_bit_pos-1) ) & 0xff
        p2 = ( Polynomial << (9 - pf_bit_pos) ) & 0xff
        p1 = np.append(p1, 0)
        p2 = np.append(0, p2)
        pr = p1 ^ p2 & 0xff
      
        while len(p) >= len(Polynomial):
            #print p
            if len(p) > len(Polynomial):
                red_poly = self.Polly_table[p[0]]
                for j,k in zip(red_poly, self.Polly_index):
                    if j != 0:
                        p[k] ^= j           
                p = p[1:]
                while p[0] == 0:
                    if len(p) == 1:
                        break
                    p = p[1:]
            else:               
                f_bit_pos = gmpy2.bit_length(int(p[0]))
                if f_bit_pos < pf_bit_pos:
                    break               

                p1 = pr << (f_bit_pos -1) & 0xff
                p2 = pr >> (9 - f_bit_pos) & 0xff          
                p1 = np.append(0, p1)
                p2 = np.append(p2, 0)
                pp = p1 ^ p2
                pp = pp[1:]
                if pp[-1] == 0:
                    pp = pp[:-1]
                pp = p[:len(pp)] ^ pp
                p = np.append(pp, p[len(pp):])
                p = self.remove_0(p)
                     
           
        p = p[::-1]
        q = np.append( p,np.zeros(4 - len(p)%4, dtype=np.int8))
        q = np.array(q, dtype='uint8')
        q = np.getbuffer(q)
        q = np.frombuffer(q, dtype='uint32')
              

        return  q     
Пример #5
0
    def modulus (self, A):
        
        B = np.copy(A)
        p1 = B.view('uint8')       
        p = p1[::-1]
        p = self.remove_0(p)
        Pl = self.Polynomial.view('uint8')
        Polynomial = Pl[::-1]
        Polynomial = self.remove_0(Polynomial)
        pf_bit_pos = gmpy2.bit_length(int(Polynomial[0]))
       
        p1 = ( Polynomial >> (pf_bit_pos-1) ) & 0xff
        p2 = ( Polynomial << (9 - pf_bit_pos) ) & 0xff
        p1 = np.append(p1, 0)
        p2 = np.append(0, p2)
        pr = p1 ^ p2 & 0xff
      
        while len(p) >= len(Polynomial):
            #print p
            if len(p) > len(Polynomial):
                red_poly = self.Polly_table[p[0]]
                for j,k in zip(red_poly, self.Polly_index):
                    if j != 0:
                        p[k] ^= j           
                p = p[1:]
                while p[0] == 0:
                    if len(p) == 1:
                        break
                    p = p[1:]
            else:               
                f_bit_pos = gmpy2.bit_length(int(p[0]))
                if f_bit_pos < pf_bit_pos:
                    break               

                p1 = pr << (f_bit_pos -1) & 0xff
                p2 = pr >> (9 - f_bit_pos) & 0xff          
                p1 = np.append(0, p1)
                p2 = np.append(p2, 0)
                pp = p1 ^ p2
                pp = pp[1:]
                if pp[-1] == 0:
                    pp = pp[:-1]
                pp = p[:len(pp)] ^ pp
                p = np.append(pp, p[len(pp):])
                p = self.remove_0(p)
                     
           
        p = p[::-1]
        q = np.append( p,np.zeros(4 - len(p)%4, dtype=np.int8))
        q = np.array(q, dtype='uint8')
        q = np.getbuffer(q)
        q = np.frombuffer(q, dtype='uint32')
              

        return  q     
Пример #6
0
 def __init__(self, g, priv):
     self.curve = g.curve
     self.g = g
     self.privkey = priv
     self.pubkey = priv * g
     self.Ln = bit_length(self.curve.n)
     assert priv < self.curve.n - 1
Пример #7
0
 def __init__(self, g, priv):
     self.curve = g.curve
     self.g = g
     self.privkey = priv
     self.pubkey = priv * g
     self.Ln = bit_length(self.curve.n)
     assert priv < self.curve.n - 1
Пример #8
0
    def Curve_Calculation(self, Polynomial):

        ##### breaking of curve to give only useful information   #######
        Curve_Polynomial = np.array([], dtype='uint8')
        Polynomial = self.str2nparray(Polynomial)
        Curve_len = (len(Polynomial) - 1) * 32 + gmpy2.bit_length(
            int(Polynomial[-1])) - 1
        D = Polynomial.view('uint8')[::-1]
        D = self.remove_0(D)
        position = np.nonzero(D)
        #print position
        position = position[0]
        secnd_chunk = 0x00
        secnd_position = 0x00
        frst_chunk = D[position[1]]
        frst_position = (position[1] / 8) * 8 + 7 - (position[1] % 8)

        if (len(position) == 3):
            secnd_chunk = D[position[2]]
            secnd_position = (position[2] / 8) * 8 + 7 - (position[2] % 8)
        Curve_Polynomial = np.array([
            Curve_len, frst_position, frst_chunk, secnd_position, secnd_chunk
        ],
                                    dtype='uint8')
        Curve_Polynomial = self.nparray2str2(Curve_Polynomial)
        return Curve_Polynomial
Пример #9
0
def aks_test(n):
    """
    Implement the AKS primality test.
    """
    get_context().precision = bit_length(n)
    # Check if n is a perfect power. If so, return composite.
    if is_power(n):
        return "composite"

    # Find the smallest r such that the multiplicative order of n modulo r
    # is greater than log(n, 2)^2
    r = get_r(n)

    # If 1 < gcd(a, n) < n for some a <= r, return composite
    for a in range(1, r):
        if gcd(a, n) > 1 and gcd(a, n) < n:
            return "composite"

    # If n <= r, return prime
    if n <= r:
        return "prime"

    # Check if (x + a)^n mod (x^r - 1, n) != (x^n + a) mod (x^r - 1, n)
    if False in ray.get([
            is_congruent.remote(a, n, r)
            for a in range(1, mpz(floor(sqrt(phi(r)) * log2(n))))
    ]):
        return "composite"

    return "prime"
Пример #10
0
def pollard_rho(n, process_id):
    i = 1
    # set the point in which rho starts
    if gmpy2.bit_length(gmpy2.mpz(n)) < RHO_CONSTANT:
        # small value modulo so we are better off starting with small value
        if DEBUG:
            print("bit size", gmpy2.bit_length(gmpy2.mpz(n)), "less than",
                  RHO_CONSTANT, "so non ran")
        initial = process_id + 2
        re_rand = False
    else:
        # small value modulo so we are better off starting with a random value
        if DEBUG:
            print("ran")
        # set a flag so we can re rand rho at a latter point
        re_rand = True
        # process_id + 2  # this could also be random.randomint(0, n - 1)
        initial = random.randint(primes[len(primes) - 1],
                                 n // (process_id + 2))
    if DEBUG:
        processLock.acquire()
        print("CORE", process_id, "checking rho of", initial)
        processLock.release()
    y = initial
    k = 2
    previous = initial
    count = 0
    while True:
        i += 1
        count += 1
        # alt methods
        # gmpy2.powmod(pow(previous, 2) - 1, 1, n)  # ((pow(previous, 2)) - 1) % n  #
        current = (((previous**2) - 1) % n)
        d = gmpy2.gcd(y - current, n)
        # check to see if we've found the terminating conditions for rho and we've found a factor
        if d != 1 and d != n:
            return d
        if i == k:
            y = current
            k = 2 * k
        previous = current
        # check to see if we are in random mode and if we need to re random
        if re_rand and count > 100000:  # (gmpy2.sqrt(n) // primes[len(primes)-1]):
            # print("RE-RAN")
            count = 0
            previous = random.randint(primes[len(primes) - 1],
                                      int(gmpy2.sqrt(n)))
Пример #11
0
    def digitial_generation(self,message,Curve_Polynomial,X,Y,Order,A,d_A):
        r=np.array([0x0],dtype='uint32')
        m=hashlib.sha256(message).hexdigest()
        
        Order_np = self.str2nparray(Order) 
        Order_int = int(Order,16)
        
        l=(len(Order_np)-1)*32+gmpy2.bit_length(int(Order_np[-1]))
     
        m = field.str2nparray(m)
        size = l/32+1
        m=self.remove_1(m)
   
        if(l>=256):
            rem=l-256
            chunk_added=(rem/32)+1
            m=np.append(np.zeros(chunk_added,dtype='uint32'),m)
            part=32-(l+chunk_added)%32
        else:
            m = m[len(m)-size:]
            part = 32-l%32

        X1=m>>part
        Y1=m<<(32-part)
        Z=np.bitwise_xor(Y1[1:],X1[:-1])
        Z=np.append(Z,X1[-1])
        
        Z = self.nparray2str(Z)
        Z = int(Z,16)
        
        Z = gmpy2.f_mod(Z,Order_int)
        S=0
        
        while(S==0):
            while(np.all(r[0]==0)):
                k=random.randint(1,Order_int-1)
                r=self.bin_public_key_gen(X,Y,A,k)

            k_inv=gmpy2.invert(k,Order_int)

            r = self.nparray2str(r[0])
            r = int(r,16)
            r=gmpy2.f_mod(r,Order_int)
            rd_A = gmpy2.mul(r,d_A)
            rd_A = gmpy2.f_mod(rd_A,Order_int)


            Zrd_A = rd_A + Z

            Zrd_A = int(Zrd_A)
            k_inv = int(k_inv)

            S = gmpy2.mul(Zrd_A,k_inv)
            S = gmpy2.f_mod(S,Order_int)

        
 
        
        return r,S
Пример #12
0
    def digitial_generation(self,message,Curve_Polynomial,X,Y,Order,A,d_A):
        r=np.array([0x0],dtype='uint32')
        m=hashlib.sha256(message).hexdigest()
        
        Order_np = self.str2nparray(Order) 
        Order_int = int(Order,16)
        
        l=(len(Order_np)-1)*32+gmpy2.bit_length(int(Order_np[-1]))
     
        m = field.str2nparray(m)
        size = l/32+1
        m=self.remove_1(m)
   
        if(l>=256):
            rem=l-256
            chunk_added=(rem/32)+1
            m=np.append(np.zeros(chunk_added,dtype='uint32'),m)
            part=32-(l+chunk_added)%32
        else:
            m = m[len(m)-size:]
            part = 32-l%32

        X1=m>>part
        Y1=m<<(32-part)
        Z=np.bitwise_xor(Y1[1:],X1[:-1])
        Z=np.append(Z,X1[-1])
        
        Z = self.nparray2str(Z)
        Z = int(Z,16)
        
        Z = gmpy2.f_mod(Z,Order_int)
        S=0
        
        while(S==0):
            while(np.all(r[0]==0)):
                k=random.randint(1,Order_int-1)
                r=self.bin_public_key_gen(X,Y,A,k)

            k_inv=gmpy2.invert(k,Order_int)

            r = self.nparray2str(r[0])
            r = int(r,16)
            r=gmpy2.f_mod(r,Order_int)
            rd_A = gmpy2.mul(r,d_A)
            rd_A = gmpy2.f_mod(rd_A,Order_int)


            Zrd_A = rd_A + Z

            Zrd_A = int(Zrd_A)
            k_inv = int(k_inv)

            S = gmpy2.mul(Zrd_A,k_inv)
            S = gmpy2.f_mod(S,Order_int)

        
 
        
        return r,S
Пример #13
0
    def digitial_Verification(self,message,Order,X,Y,A,d_A,r,S):
        
        
        X=self.str2nparray(X)
        Y=self.str2nparray(Y)

        A=self.str2nparray(A)
        
        m=hashlib.sha256(message).hexdigest()
      
        Order_np = self.str2nparray(Order) 
        Order_int = int(Order,16)
        
        l=(len(Order_np)-1)*32+gmpy2.bit_length(int(Order_np[-1]))
      
        m = field.str2nparray(m)
        size = l/32+1
        m=self.remove_1(m)
 
        if(l>=256):
            rem=l-256
            chunk_added=(rem/32)+1
            m=np.append(np.zeros(chunk_added,dtype='uint32'),m)
            part=32-(l+chunk_added)%32
        else:
            m = m[len(m)-size:]
            part = 32-l%32

        X1=m>>part
        Y1=m<<(32-part)
        Z=np.bitwise_xor(Y1[1:],X1[:-1])
        Z=np.append(Z,X1[-1])
        
        Z = self.nparray2str(Z)
        Z = int(Z,16)
        Z = gmpy2.f_mod(Z,Order_int)                               #####Truncated Message
        
        w=gmpy2.invert(S,Order_int) 
        
        u1 = gmpy2.mul(Z,w)
        u1 = gmpy2.f_mod(u1,Order_int)
       
        u2 = gmpy2.mul(r,w)
        u2 = gmpy2.f_mod(u2,Order_int)
      
        Q_A=self.public_key_gen(X,Y,A,d_A)   #Q_A = d_A * G    
 
       
        X1=self.public_key_gen(X,Y,A,int(u1))
        X2=self.public_key_gen(Q_A[0],Q_A[1],A,int(u2))    #u2*Q_A
        X3=self.point_add(X1[0],X1[1],X2[0],X2[1],A)
        X3=self.nparray2str(X3[0])
        X3 = gmpy2.f_mod(int(X3,16),Order_int)
        
        #print X3[0]
        
        return X3
def data_format_bind(x, y, bits):
	len_y = bit_length(y)
	x_bin = bin(x << (bits - len_y))
	x_bin_str = str(x_bin)
	y_bin = bin(y)
	y_bin_str = str(y_bin)
	x_y_bind_str = x_bin_str[2:] + y_bin_str[2 :]
	x_y_bind = mpz(x_y_bind_str, 2)
	return x_y_bind
Пример #15
0
    def digitial_Verification(self,message,Order,X,Y,A,d_A,r,S):
        
        
        X=self.str2nparray(X)
        Y=self.str2nparray(Y)

        A=self.str2nparray(A)
        
        m=hashlib.sha256(message).hexdigest()
      
        Order_np = self.str2nparray(Order) 
        Order_int = int(Order,16)
        
        l=(len(Order_np)-1)*32+gmpy2.bit_length(int(Order_np[-1]))
      
        m = field.str2nparray(m)
        size = l/32+1
        m=self.remove_1(m)
 
        if(l>=256):
            rem=l-256
            chunk_added=(rem/32)+1
            m=np.append(np.zeros(chunk_added,dtype='uint32'),m)
            part=32-(l+chunk_added)%32
        else:
            m = m[len(m)-size:]
            part = 32-l%32

        X1=m>>part
        Y1=m<<(32-part)
        Z=np.bitwise_xor(Y1[1:],X1[:-1])
        Z=np.append(Z,X1[-1])
        
        Z = self.nparray2str(Z)
        Z = int(Z,16)
        Z = gmpy2.f_mod(Z,Order_int)                               #####Truncated Message
        
        w=gmpy2.invert(S,Order_int) 
        
        u1 = gmpy2.mul(Z,w)
        u1 = gmpy2.f_mod(u1,Order_int)
       
        u2 = gmpy2.mul(r,w)
        u2 = gmpy2.f_mod(u2,Order_int)
      
        Q_A=self.public_key_gen(X,Y,A,d_A)   #Q_A = d_A * G    
 
       
        X1=self.public_key_gen(X,Y,A,int(u1))
        X2=self.public_key_gen(Q_A[0],Q_A[1],A,int(u2))    #u2*Q_A
        X3=self.point_add(X1[0],X1[1],X2[0],X2[1],A)
        X3=self.nparray2str(X3[0])
        X3 = gmpy2.f_mod(int(X3,16),Order_int)
        
        #print X3[0]
        
        return X3
	def signcrypt( self, Reciever, params, m):
		#	R = g ** w mod p, w <-- Zq
		w, R_value = random_pick(params.p, params.q, params.g)
		#	h1_R = H1(ID_R, X_R, Y_R) <-- Zq
		h1_R = H1_hash(Reciever.uid, Reciever.X_u, Reciever.Y_u, bit_length(params.q))
		#	V = (X_R * Y_R * (p_pub**h1_R)) ** w mod p
		V_value = V_compute(Reciever.X_u, Reciever.Y_u, params.p_pub, h1_R, w, params.p)
		#	h3 = H3(V) <-- Zq
		h3_value = H3_hash( V_value, bit_length( params.p ))
		#	d = H4(ID_S, m, X_S, R) <-- Zq
		d_value = H4_hash(self.uid, m, self.X_u, R_value, bit_length(params.q))
		#	f = H4(ID_S, m, Y_S, R) <-- Zq
		f_value = H4_hash(self.uid, m, self.Y_u, R_value, bit_length(params.q))
		#	U = d * (x_a + y_a) + w * f mod q
		U_value = t_mod((d_value * (self.x_u + self.y_u) + w * f_value), params.q)
		#	m || U
		m_u_value = data_format_bind(m, U_value, bit_length(params.q))
		#	C = H3(V) (+) m || U
		C_value = h3_value ^ m_u_value
		#	h2 = H2(ID_a, R, C) <-- Zq
		h2_value =  H2_hash(self.uid, R_value, C_value, bit_length(params.q))
		#	S = w * ((x_a + y_a +h2) ** -1) mod q
		x_y_h_invert = invert(self.x_u + self.y_u + h2_value, params.q)
		S_value = t_mod(w * x_y_h_invert, params.q)
		#	signcryption_text = (h2, S, C)
		Signcryption_text = (h2_value, S_value, C_value)
		return Signcryption_text
	def unsigncrypt( self, Sender, params, Signcryption_text):
		#	get h2, S, C
		h2_value = Signcryption_text[0]
		S_value = Signcryption_text[1]
		C_value = Signcryption_text[2]
		#	h1_S = H1(ID_S, X_S, Y_S) <-- Zq
		h1_S = H1_hash(Sender.uid, Sender.X_u, Sender.Y_u, bit_length(params.q))
		#	R' = (X_S * Y_S * (p_pub**h1_S) * (g ** h2)) ** w mod p, un represent '
		temp = powmod(params.g, h2_value, params.p)
		temp = t_mod(temp * Sender.Y_u, params.p)
		R_value_un = V_compute(Sender.X_u, temp, params.p_pub, h1_S, S_value, params.p)
		#	V' = R' ** (x_b + y_b) mod q
		V_value_un = powmod(R_value_un, t_mod(self.x_u + self.y_u, params.q), params.p)
		#	h3 = H3(V') <-- Zp
		h3_value = H3_hash(V_value_un, bit_length(params.p))
		#	m || U = C (+) h3
		m_u_value_un = C_value ^ h3_value
		#	get m'
		m_un = m_u_value_un >> bit_length(params.q)
		#	get U'
		U_value_un = (m_un << bit_length(params.q)) ^ m_u_value_un
		#	d' = H4(ID_a, m', X_a, R) <-- Zq
		d_value_un = H4_hash(Sender.uid, m_un, Sender.X_u, R_value_un, bit_length(params.q))
		#	f' = H4(ID_a, m', Y_a, R) <-- Zq
		f_value_un = H4_hash(Sender.uid, m_un, Sender.Y_u, R_value_un, bit_length(params.q))
		#	verify g ** U' == ((X_a * Y_a * (p_pub ** h1_a)) ** d') * (R' ** f') mod p
		#	if return true, then return m'; else return None
		left_value = powmod(params.g, U_value_un, params.p)
		temp1 = V_compute(Sender.X_u, Sender.Y_u, params.p_pub, h1_S, d_value_un, params.p)
		temp2 = powmod(R_value_un, f_value_un, params.p)
		right_value = t_mod(temp1 * temp2, params.p)
		if left_value == right_value :
			return m_un
def m2list(m, bits):
    m_len = bit_length(m)
    m_number = m_len // (bits - 2) + 1
    m_bin_str = bin(m)
    m_list = []
    for x in range(m_number):
        if x != m_number - 1:
            temp_str = '1' + m_bin_str[(2 + x * (bits - 2)):(2 + (x + 1) *
                                                             (bits - 2))]
            m_list.append(mpz(temp_str, 2))
        else:
            temp_str = '1' + m_bin_str[(2 + x * (bits - 2)):]
            m_list.append(mpz(temp_str, 2))
    return m_list
Пример #19
0
   def bin_inverse(self,A):
       p=self.Polynomial.tolist()
                
       while p[-1] == 0:
           if len(p) == 1:
               break
           p = p[:-1]
       length=len(p)*32-32+gmpy2.bit_length(p[-1])-1
       A=self.str2nparray(A)
    
       array=self.baumer_chain(length)
 
       C=self.inverse1(A)
       
       return C
Пример #20
0
   def bin_inverse(self,A):
       p=self.Polynomial.tolist()
                
       while p[-1] == 0:
           if len(p) == 1:
               break
           p = p[:-1]
       length=len(p)*32-32+gmpy2.bit_length(p[-1])-1
       A=self.str2nparray(A)
    
       array=self.baumer_chain(length)
 
       C=self.inverse1(A)
       
       return C
Пример #21
0
 def public_key_gen(self,x,y,a,n):
  
     sq=[]
     sq_x=[]
 
     public_key=[]
     bit_len = gmpy2.bit_length(n)
     
     ####public key generation  #########3
     
     if(n&0x1):
           sq_x.append(x)
           sq_x.append(y)
         
     for i in range(1,bit_len):
         if((n>>i)&0x01):
           
             sq=self.point_doubl(x,y,a)
             sq_x.append(sq[0])
             sq_x.append(sq[1])
             x=sq[0]
             y=sq[1]
         else:
             sq=self.point_doubl(x,y,a)
             x=sq[0]
             y=sq[1]
                 
    
     j=0  
     sq=[]
     
     if(len(sq_x)==2):
         return sq_x[-2:]
     x2=sq_x[2]
     y2=sq_x[3]
     for i in range(len(sq_x)/2-1):
       
         sq = self.point_add(sq_x[j],sq_x[j+1],x2,y2,a)
         public_key.append(sq[0])
         public_key.append(sq[1])
         if(i==0):
             j=j+4
         else:
             j=j+2
         x2=(sq[0])
         y2=(sq[1])  
 
     return public_key[-2:]
Пример #22
0
 def public_key_gen(self,x,y,a,n):
  
     sq=[]
     sq_x=[]
 
     public_key=[]
     bit_len = gmpy2.bit_length(n)
     
     ####public key generation  #########3
     
     if(n&0x1):
           sq_x.append(x)
           sq_x.append(y)
         
     for i in range(1,bit_len):
         if((n>>i)&0x01):
           
             sq=self.point_doubl(x,y,a)
             sq_x.append(sq[0])
             sq_x.append(sq[1])
             x=sq[0]
             y=sq[1]
         else:
             sq=self.point_doubl(x,y,a)
             x=sq[0]
             y=sq[1]
                 
    
     j=0  
     sq=[]
     
     if(len(sq_x)==2):
         return sq_x[-2:]
     x2=sq_x[2]
     y2=sq_x[3]
     for i in range(len(sq_x)/2-1):
       
         sq = self.point_add(sq_x[j],sq_x[j+1],x2,y2,a)
         public_key.append(sq[0])
         public_key.append(sq[1])
         if(i==0):
             j=j+4
         else:
             j=j+2
         x2=(sq[0])
         y2=(sq[1])  
 
     return public_key[-2:]
Пример #23
0
 def inverse1(self,A):
     P=self.remove_1(self.Polynomial)
     l=((len(P)-1)*32)+gmpy2.bit_length(int(P[-1]))-1
 
     array = self.baumer_chain(l)
     count=0
     inv_array=np.array([A],dtype='uint32')
     prev=np.copy(A)
     #print array
     for i in range(0,len(array)-1,2):
         #print i
         x=array[i]
         y=array[i+1]
         var=y           #how many time squaring
         #print var,x,y
         n=prev
         while(var!=0):
            
             var=var-1
             sqr=self.modulus(self.square(n))
             n=sqr
             #break
         
     
         
         if(y==1):
             f=A
         else:
             f=prev
         #print f,d
         mul=self.modulus(self.multiplication(f,sqr))
         count+=1
         prev=mul
         
         
     final=self.modulus(self.square(prev))
     #print "number of multiplication",count   
         
             
         
         
     #print prev   
         #print x,y
     return final
Пример #24
0
 def inverse1(self,A):
     P=self.remove_1(self.Polynomial)
     l=((len(P)-1)*32)+gmpy2.bit_length(int(P[-1]))-1
 
     array = self.baumer_chain(l)
     count=0
     inv_array=np.array([A],dtype='uint32')
     prev=np.copy(A)
     #print array
     for i in range(0,len(array)-1,2):
         #print i
         x=array[i]
         y=array[i+1]
         var=y           #how many time squaring
         #print var,x,y
         n=prev
         while(var!=0):
            
             var=var-1
             sqr=self.modulus(self.square(n))
             n=sqr
             #break
         
     
         
         if(y==1):
             f=A
         else:
             f=prev
         #print f,d
         mul=self.modulus(self.multiplication(f,sqr))
         count+=1
         prev=mul
         
         
     final=self.modulus(self.square(prev))
     #print "number of multiplication",count   
         
             
         
         
     #print prev   
         #print x,y
     return final
def generate_strong_strong_prime(seed, min_bitsize, strong_strong_integers,
                                 number_of_strong_strong_integers, gamma, PI):
    """Return a strong strong prime deterministically determined from the input parameters, and what remains of the seed.

    Depending on the target prime size "min_bitsize", we need to find the appropriate table of first primes
    [p_0,...,p_{f-2},p_{f-1}] such that PI = p_0 * ... * p_{f-1} is larger than 2**(min_bitsize-2), but such that p_0 *
    ... * p_{f-2} is not. We'll store the primes in a table called "first_primes", such that first_primes[i] = p_i. The
    variable "strong_strong_integers" will be a list of lists, such that strong_strong_integers[i] is the list of
    integers r such that r, 2r+1 and 2(2r+1)+1 are invertible modulo first_primes[i]. Taking the inverse CRT on any
    
    [c_0,c_1,...,c_{f-1}] = [strong_strong_integers[0][i],strong_strong_integers[1][j],...,strong_strong_integers[f-1][k]]

    gives an integer c such that c, 2c+1, and 4c+3 are invertible modulo PI, which makes c a good candidate for being
    a strong strong prime generator (i.e., 4c+3 a good candidate for being a strong strong prime). The seed allows to
    determine in initial array [c_0,c_1,...,c_{f-1}] and thus an initial candidate c. Going from one such array to the
    other is done deterministically.

    """

    # Consume the seed and update it

    (indexes,
     seed) = list_of_indexes_from_seed(seed, number_of_strong_strong_integers)

    candidate_nbr = 0
    while True:

        alpha = [x[i] for x, i in zip(strong_strong_integers, indexes)
                 ]  # alpha is in Z2* x Z3* x Z5* x ..... Apply the inverse CRT
        c = sum([x * y for x, y in zip(alpha, gamma)]) % PI
        candidate_nbr += 1

        if gmpy2.bit_length(
                c
        ) >= min_bitsize - 2 and subroutines.is_strong_strong_prime_generator(
                c):
            break

        indexes = next_indexes(indexes, number_of_strong_strong_integers)

    print("\tThe successful candidate is the number %d" % (candidate_nbr))

    return (4 * c + 3, seed)
Пример #26
0
    def Curve_Calculation(self,Polynomial):

        ##### breaking of curve to give only useful information   #######    
        Curve_Polynomial=np.array([],dtype='uint8')    
        Polynomial=self.str2nparray(Polynomial)
        Curve_len=(len(Polynomial)-1)*32+gmpy2.bit_length(int(Polynomial[-1]))-1
        D=Polynomial.view('uint8')[::-1]
        D=self.remove_0(D)
        position=np.nonzero(D)
        #print position
        position=position[0]
        secnd_chunk=0x00
        secnd_position=0x00
        frst_chunk=D[position[1]]
        frst_position=(position[1]/8)*8+7-(position[1]%8)

        if(len(position)==3):
            secnd_chunk=D[position[2]]
            secnd_position=(position[2]/8)*8+7-(position[2]%8)
        Curve_Polynomial=np.array([Curve_len,frst_position,frst_chunk,secnd_position,secnd_chunk],dtype='uint8')
        Curve_Polynomial=self.nparray2str2(Curve_Polynomial)
        return Curve_Polynomial
Пример #27
0
def william_p1(n, process_id):
    # this algorithm technically works but literally none of the modulos were p+1 so idk
    # choose a B (work limit) to start with
    if gmpy2.bit_length(gmpy2.mpz(n)) <= 2044:
        work_limit = pow(n, (1 / 6))
    else:
        work_limit = gmpy2.div(n, 27)
    threshold = 3
    previous_sub2 = 2
    # A needs to be greater than 2 to start with so we therefore start with 3
    A = process_id + 3
    previous = A

    counter = 0
    # if the counter ever reaches m, terminate
    while counter != threshold:
        counter += 1
        # current = (a^(current-1) - current-2) % n)
        current = (((A**previous) - previous_sub2) % n)
        # move the previous variables forward
        previous_sub2 = previous
        previous = current

        d = gmpy2.gcd(current - 2, n)
        if d != 1 and d != n:
            # calculate the factorial of m
            mult = gmpy2.fac(threshold)
            if DEBUG:
                print(d, mult)
            # check to see if we've found the terminating conditions for p + 1
            if gmpy2.f_mod(mult, d):
                return d
        else:
            # increment threshold by 1 if we haven't found anything
            threshold += 1
        if threshold > work_limit:
            return 1

    return 1
Пример #28
0
def pollard_p1(n, process_id):
    # choose a B (work limit) to start with
    if gmpy2.bit_length(gmpy2.mpz(n)) <= 2044:
        work_limit = pow(n, (1 / 6))
    else:
        work_limit = gmpy2.div(n, 27)
    a = 2
    # break up how many things we have to check so we can split over cores
    process_range = (math.floor(work_limit) // PROCESS_COUNT)
    start = process_range * process_id
    end = process_range * (process_id + 1) - 1

    # assign default values here so we are an excellent, coding standard following coder
    q1, q2, q3 = 0, 0, 0
    if DEBUG:
        # lock processes so we can print cleanly (thanks 421)
        processLock.acquire()
        print("CORE", process_id, "checking p1 from", start, "to", end)
        processLock.release()
        # calculate the quarter ranges
        q1 = ((process_range // 4) * 1) + start
        q2 = ((process_range // 4) * 2) + start
        q3 = ((process_range // 4) * 3) + start
    for i in range(start, end):
        # print informative debug statements
        if DEBUG:
            if i == q1:
                print("CORE", process_id, "p1 25%")
            elif i == q2:
                print("CORE", process_id, "p1 50%")
            elif i == q3:
                print("CORE", process_id, "p1 75%")

        # check to see if we've found the terminating conditions for p - 1
        a = gmpy2.powmod(a, i, n)
        d = gmpy2.gcd(a - 1, n)
        if d != 1 and d != n:
            return d
    return 1
def generate_strong_strong_prime(seed, min_bitsize,strong_strong_integers,number_of_strong_strong_integers,gamma,PI):
    """Return a strong strong prime deterministically determined from the input parameters, and what remains of the seed.

    Depending on the target prime size "min_bitsize", we need to find the appropriate table of first primes
    [p_0,...,p_{f-2},p_{f-1}] such that PI = p_0 * ... * p_{f-1} is larger than 2**(min_bitsize-2), but such that p_0 *
    ... * p_{f-2} is not. We'll store the primes in a table called "first_primes", such that first_primes[i] = p_i. The
    variable "strong_strong_integers" will be a list of lists, such that strong_strong_integers[i] is the list of
    integers r such that r, 2r+1 and 2(2r+1)+1 are invertible modulo first_primes[i]. Taking the inverse CRT on any
    
    [c_0,c_1,...,c_{f-1}] = [strong_strong_integers[0][i],strong_strong_integers[1][j],...,strong_strong_integers[f-1][k]]

    gives an integer c such that c, 2c+1, and 4c+3 are invertible modulo PI, which makes c a good candidate for being
    a strong strong prime generator (i.e., 4c+3 a good candidate for being a strong strong prime). The seed allows to
    determine in initial array [c_0,c_1,...,c_{f-1}] and thus an initial candidate c. Going from one such array to the
    other is done deterministically.

    """

    # Consume the seed and update it
    
    (indexes, seed) = list_of_indexes_from_seed(seed, number_of_strong_strong_integers)
    
    candidate_nbr = 0
    while True:

        alpha = [x[i] for x, i in zip(strong_strong_integers, indexes)] # alpha is in Z2* x Z3* x Z5* x ..... Apply the inverse CRT
        c = sum([x*y for x, y in zip(alpha, gamma)]) % PI
        candidate_nbr += 1
        
        if gmpy2.bit_length(c) >= min_bitsize-2 and subroutines.is_strong_strong_prime_generator(c):
            break

        indexes = next_indexes(indexes, number_of_strong_strong_integers)

    print("\tThe successful candidate is the number %d"%(candidate_nbr))

    return (4*c + 3,seed)
Пример #30
0
    alice_public_exponent, alice_modulus))
log.info("Bob public key has public exponent {} and modulus {}".format(
    bob_public_exponent, bob_modulus))

# Get K1 and K2 in multi-precision form
res_k1 = iroot(mpz(Converter.bytes_to_int(c1)), alice_public_exponent)
res_k2 = iroot(mpz(Converter.bytes_to_int(c2)), bob_public_exponent)
if (res_k1[1] and res_k2[1]):

    # Convert results to bytes
    k1 = Converter.swap_endianness(to_binary(res_k1[0]))[:-2]
    k2 = Converter.swap_endianness(to_binary(res_k2[0]))[:-2]

    # Log
    log.success("Finded K1, with effective length of {} bits, is {}".format(
        bit_length(res_k1[0]), Converter.bytes_to_hex(k1)))
    log.success("Finded k2, with effective length of {} bits, is: {}".format(
        bit_length(res_k2[0]), Converter.bytes_to_hex(k2)))

else:

    # Force exitW
    log.failure("Failed to obtain K1 and K2")
    exit(0)

# Compute key used in AES
xor = bytes([_k1_char ^ _k2_char for _k1_char, _k2_char in zip(k1, k2)])
log.info("XOR between K1 and K2 is: {}".format(Converter.bytes_to_hex(xor)))
k = SHA256.new(xor).digest()
log.info("Key used for AES encryption is: {}".format(
    Converter.bytes_to_hex(k)))
Пример #31
0
    def gen_mod_table(self):
        index = 0
        p = self.Polynomial.view('uint8')
        p = p[::-1]
        while (p[0] == 0):
            if (len(p) == 1):
                break
            p = p[1:]
            
        f_bit_pos = gmpy2.bit_length(int(p[0])) 
        
        self.Polly_byte_len = len(p)
        self.Polly_bit_len = f_bit_pos
    
      
        p = np.array(p)
      
        
        p1 = p >> (f_bit_pos-1)
        p2 = p << (9 - f_bit_pos)
       

        p1 = np.append(p1, 0)
        p2 = np.append(0, p2)   
        pr = p1 ^ p2 & 0xff


        p1 = pr >> 1
        p2 = pr << 7
      
        p1 = np.append(p1, 0)
        p2 = np.append(0, p2)        
        pl = (p1 ^ p2) & 0xff
        pl = pl[1:]
        
        pl[0] = pl[0] & 0x7F
        self.pr = pr
        poly_7 = []
        p3 = np.append(0, pr[1:])
        poly_7.append(p3)
        
                
        for i in range(7):
            p1 = p3 << (1)
            p2 = p3 >> (7)
            p2 = np.append(p2[1:], 0)
            p3 = (p1 ^ p2) & 0xff
       
            if not p3[0] == 0:
                p3 = p3 ^ pr
            poly_7.append(p3)            
        
  
        index = []
        
        for i in range(len(poly_7[0])):
            for j in poly_7:
                if j[i] != 0:
                    index.append(i)
                    break  
       
            
        Polly_table = []
        for i in range(256):
            val = np.zeros(len(poly_7[0]),  dtype='uint8')
            for j in range(8):
                if ((i >> j) & 0x1):
                    val = val ^ poly_7[j]
            indexed_val = []
            for k in index:
                indexed_val.append(val[k])                
            Polly_table.append(np.array(indexed_val))
      
        self.Polly_table = Polly_table
        self.Polly_index = index
        return 0
Пример #32
0
    bits = 512   # 1024/2
    e = 0x3
    while True:
        p,q = gmpy2.mpz(getPrime(bits)), gmpy2.mpz(getPrime(bits))
        N   = gmpy2.mpz(p * q)
        phi = (p - 1) * (q - 1)
        if gcd(e, phi) == 1:
            break
    #print e, phi
    d   = gmpy2.invert(e, phi)

    return (e, N), (d, N)
def rsa_enc(m, (e, N)):

    m     = a2i(m)
    len_m = gmpy2.bit_length(m) - 1
    len_n = gmpy2.bit_length(N) - 1
    if len_n < len_m: # if message is bigger than N
        pass
    else:
        c = gmpy2.powmod(m, e, N)
        return c

def rsa_dec(c, (d, N)):
    m = gmpy2.powmod(c, d, N)
    return i2a(m)

def a2i(m):
    # transform ASCII to int.
    return int(m.encode('hex'), 16)
def i2a(i):
def main():

    # Test local versions of libraries

    utils.test_python_version()
    utils.test_gmpy2_version()
    utils.test_pari_version()
    utils.test_pari_seadata()
    
    now = datetime.now()
    
    # Parse command line arguments

    parser = argparse.ArgumentParser(description="Generate an Edwards curve over a given prime field, suited for cryptographic purposes.")
    parser.add_argument("input_file",
                        help="""JSON file containing the BBS parameters and the prime of the underlying field (typically, the output of
                        03_generate_prime_field_using_bbs.py.
                        """)
    parser.add_argument("output_file", help="Output file where this script will write the parameter d of the curve and the current BBS parameters.")
    parser.add_argument("--start",
                        type=int,
                        help="Number of the candidate to start with (default is 1).",
                        default=1)
    parser.add_argument("--max_nbr_of_tests",
                        type=int,
                        help="Number of candidates to test before stopping the script (default is to continue until success).")
    parser.add_argument("--fast",
                        help=""" While computing a the curve cardinality with SAE, early exit when the cardinality will obviously be divisible by
                        a small integer > 4. This reduces the time required to find the final curve, but the
                        cardinalities of previous candidates are not fully computed.
                        """,
                        default=False,
                        action="store_true")

    args = parser.parse_args()

    
    # Check arguments

    print("Checking inputs...")
    
    output_file = args.output_file
    if os.path.exists(output_file):
        utils.exit_error("The output file '%s' already exists. Exiting."%(output_file))

    input_file = args.input_file
    with open(input_file, "r") as f:
        data = json.load(f)

        
    # Declare a few important variables
        
    bbs_p = int(data["bbs_p"])
    bbs_q = int(data["bbs_q"])
    bbs_n = bbs_p * bbs_q
    bbs_s = int(data["bbs_s"]) % bbs_n
    p = int(data["p"])

    start = max(int(args.start),1)

    max_nbr_of_tests = None
    if args.max_nbr_of_tests:
        max_nbr_of_tests = int(args.max_nbr_of_tests)
        
    if not subroutines.is_strong_strong_prime(bbs_p):
        utils.exit_error("bbs_p is not a strong strong prime.")
    if not subroutines.is_strong_strong_prime(bbs_q):
        utils.exit_error("bbs_q is not a strong strong prime.")
    if not (subroutines.deterministic_is_pseudo_prime(p) and p%4 == 3):
        utils.exit_error("p is not a prime congruent to 3 modulo 4.")

        
    # Initialize BBS

    print("Initializing BBS...")
    bbs = bbsengine.BBS(bbs_p, bbs_q, bbs_s)

    
    # Info about the prime field
    
    utils.colprint("Prime of the underlying prime field:", "%d (size: %d)"%(p, gmpy2.bit_length(p)))    
    size = gmpy2.bit_length(p) # total number of bits queried to bbs for each test

    
    # Skip the first "start" candidates
    
    candidate_nbr = start-1
    bbs.skipbits(size * (start-1))


    # Start looking for "d"
    
    while True:
        
        if max_nbr_of_tests and candidate_nbr >= start + max_nbr_of_tests - 1:
            print("Did not find an adequate parameter, starting at candidate %d (included), limiting to %d candidates."%(start, max_nbr_of_tests))
            utils.exit_error("Last candidate checked was number %d."%(candidate_nbr))

        candidate_nbr += 1

        bits = bbs.genbits(size)
        d = 0
        for bit in bits:
            d = (d << 1) | bit
        print("The candidate number %d is d = %d (ellapsed time: %s)"%(candidate_nbr, d, str(datetime.now()-now)))

        
        # Test 1
        
        if not utils.check(d != 0 and d < p, "d != 0 and d < p", 1):
            continue

        # Test 2
        
        if not utils.check(gmpy2.legendre(d, p) == -1, "d is not a square modulo p", 2):
            continue
        
        # Test 3
        
        if args.fast:
            cardinality = subroutines.sea_edwards(1, d, p, 4)
        else:
            cardinality = subroutines.sea_edwards(1, d, p)
        assert(cardinality % 4 == 0)
        q = cardinality>>2
        if not utils.check(subroutines.deterministic_is_pseudo_prime(q), "The curve cardinality / 4 is prime", 3):
            continue

        # Test 4
        
        trace = p+1-cardinality
        cardinality_twist = p+1+trace
        assert(cardinality_twist % 4 == 0)
        q_twist = cardinality_twist>>2
        if not utils.check(subroutines.deterministic_is_pseudo_prime(q_twist), "The twist cardinality / 4 is prime", 4):
            continue
        
        # Test 5

        if not utils.check(q != p and q_twist != p, "Curve and twist are safe against additive transfer", 5):
            continue
        
        # Test 6

        embedding_degree = subroutines.embedding_degree(p, q)
        if not utils.check(embedding_degree > (q-1) // 100, "Curve is safe against multiplicative transfer", 6):
            continue

        # Test 7

        embedding_degree_twist = subroutines.embedding_degree(p, q_twist)
        if not utils.check(embedding_degree_twist > (q_twist-1) // 100, "Twist is safe against multiplicative transfer", 7):
            continue

        # Test 8

        D = subroutines.cm_field_discriminant(p, trace)
        if not utils.check(abs(D) >= 2**100, "Absolute value of the discriminant is larger than 2^100", 8):
            continue

        break

    
    # Find a base point

    while True:
    
        bits = bbs.genbits(size)
        y = 0
        for bit in bits:
            y = (y<<1) | bit
        u = int((1 - y**2) * gmpy2.invert(1 - d*y**2, p)) % p
        if gmpy2.legendre(u, p) == -1:
            continue
        x = gmpy2.powmod(u, (p+1) // 4, p)
        (x,y) = subroutines.add_on_edwards(x, y, x, y, d, p)
        (x,y) = subroutines.add_on_edwards(x, y, x, y, d, p)
        if (x, y) == (0, 1):
            continue

        assert((x**2 + y**2) % p == (1 + d*x**2*y**2) % p)
        
        break

    
    # Print some informations
    
    utils.colprint("Number of the successful candidate:", str(candidate_nbr))
    utils.colprint("Edwards elliptic curve parameter d is:", str(d))
    utils.colprint("Number of points:", str(cardinality))
    utils.colprint("Number of points on the twist:", str(cardinality_twist))
    utils.colprint("Embedding degree of the curve:", "%d"%embedding_degree)
    utils.colprint("Embedding degree of the twist:", "%d"%embedding_degree_twist)
    utils.colprint("Discriminant:", "%d"%D)
    utils.colprint("Trace:", "%d"%trace)
    utils.colprint("Base point coordinates:", "(%d, %d)"%(x, y))

    
    # Save p, d, x, y, etc. to the output_file

    print("Saving the parameters to %s"%output_file)
    bbs_s = bbs.s
    with open(output_file, "w") as f:
        json.dump({"p": int(p),
                   "bbs_p": int(bbs_p),
                   "bbs_q": int(bbs_q),
                   "bbs_s": int(bbs_s),
                   "candidate_nbr": int(candidate_nbr),
                   "d": int(d),
                   "cardinality": cardinality,
                   "cardinality_twist": cardinality_twist,
                   "embedding_degree": embedding_degree,
                   "embedding_degree_twist": embedding_degree_twist,
                   "discriminant": D,
                   "trace": trace,
                   "base_point_x": x,
                   "base_point_y": y},
                  f,
                  sort_keys=True)
Пример #34
0
 def partialkey_compute(self, User):
     r_u, User.Y_u = random_pick(self.p, self.q, self.g)
     User.y_u = t_mod((r_u + t_mod(
         self.s * H1_hash(User.uid, User.X_u, User.Y_u, bit_length(self.q)),
         self.q)), self.q)
Пример #35
0
def main():

    # Test local versions of libraries

    utils.test_python_version()
    utils.test_gmpy2_version()
    
    # Parse command line arguments

    parser = argparse.ArgumentParser(description="Generate a prime field, suited for being the underlying field of a twist-secure Edwards curve.")
    parser.add_argument("input_file", help="JSON file containing the BBS parameters (typically, the output of 02_generate_bbs_parameters.py).")
    parser.add_argument("output_file", help="Output file where this script will write the prime of the field and the current BBS parameters.")
    parser.add_argument("prime_size", type=int, help="Size of the prime (e.g. 256 bits)")
    
    args = parser.parse_args()

    
    # Check arguments

    output_file = args.output_file
    if os.path.exists(output_file):
        utils.exit_error("The output file '%s' already exists. Exiting."%(output_file))

    size = int(args.prime_size)

    input_file = args.input_file
    with open(input_file, "r") as f:
        data = json.load(f)        
    bbs_p = int(data["bbs_p"])
    bbs_q = int(data["bbs_q"])
    bbs_n = bbs_p * bbs_q
    bbs_s = int(data["bbs_s"]) % bbs_n

    
    # Check inputs

    print("Checking inputs...")
    if not subroutines.is_strong_strong_prime(bbs_p):
        utils.exit_error("bbs_p is not a strong strong prime.")
    if not subroutines.is_strong_strong_prime(bbs_q):
        utils.exit_error("bbs_q is not a strong strong prime.")

        
    # Initialize BBS

    bbs = bbsengine.BBS(bbs_p, bbs_q, bbs_s)

    
    # generate a "size"-bit prime "p"

    candidate_nbr = 0
    print("Generating a prime field Fp (where p is congruent to 3 mod 4)...")
    while True:
        candidate_nbr += 1
        bits = [1] + bbs.genbits(size-3) + [1,1]
        assert(len(bits) == size)
        p = 0
        for bit in bits:
            p = (p << 1) | bit
        assert(p % 4 == 3)
        assert(gmpy2.bit_length(p) == size)
        if subroutines.deterministic_is_pseudo_prime(p):
            break
    utils.colprint("%d-bit prime found:"%size, str(p))
    utils.colprint("The good candidate was number: ", str(candidate_nbr))

    
    # Save p and the current bbs parameters to the output_file

    print("Saving p and the BBS parameters to %s"%(output_file))
    bbs_s = bbs.s
    with open(output_file, "w") as f:
        json.dump({"p": int(p), 
                   "bbs_p": int(bbs_p), 
                   "bbs_q": int(bbs_q), 
                   "bbs_s": int(bbs_s)}, 
                  f,
                  sort_keys=True)
Пример #36
0
    def gen_mod_table(self):
        index = 0
        p = self.Polynomial.view('uint8')
        p = p[::-1]
        while (p[0] == 0):
            if (len(p) == 1):
                break
            p = p[1:]
            
        f_bit_pos = gmpy2.bit_length(int(p[0])) 
        
        self.Polly_byte_len = len(p)
        self.Polly_bit_len = f_bit_pos
    
      
        p = np.array(p)
      
        
        p1 = p >> (f_bit_pos-1)
        p2 = p << (9 - f_bit_pos)
       

        p1 = np.append(p1, 0)
        p2 = np.append(0, p2)   
        pr = p1 ^ p2 & 0xff


        p1 = pr >> 1
        p2 = pr << 7
      
        p1 = np.append(p1, 0)
        p2 = np.append(0, p2)        
        pl = (p1 ^ p2) & 0xff
        pl = pl[1:]
        
        pl[0] = pl[0] & 0x7F
        self.pr = pr
        poly_7 = []
        p3 = np.append(0, pr[1:])
        poly_7.append(p3)
        
                
        for i in range(7):
            p1 = p3 << (1)
            p2 = p3 >> (7)
            p2 = np.append(p2[1:], 0)
            p3 = (p1 ^ p2) & 0xff
       
            if not p3[0] == 0:
                p3 = p3 ^ pr
            poly_7.append(p3)            
        
  
        index = []
        
        for i in range(len(poly_7[0])):
            for j in poly_7:
                if j[i] != 0:
                    index.append(i)
                    break  
       
            
        Polly_table = []
        for i in range(256):
            val = np.zeros(len(poly_7[0]),  dtype='uint8')
            for j in range(8):
                if ((i >> j) & 0x1):
                    val = val ^ poly_7[j]
            indexed_val = []
            for k in index:
                indexed_val.append(val[k])                
            Polly_table.append(np.array(indexed_val))
      
        self.Polly_table = Polly_table
        self.Polly_index = index
        return 0
Пример #37
0
    def modulus1 (self, A):
        B = np.copy(A)
        p1 = B.view('uint8')        
        p = p1[::-1]
        
        byte_len = self.Polly_byte_len
        bit_len = self.Polly_bit_len 
  
        while p[0] == 0:
            if len(p) == 1:
                break
            p = p[1:]
       
        '''Reduction based on lookup tables'''
        
        while len(p) > byte_len:
            red_poly = self.Polly_table[p[0]]
   
            for j,k in zip(red_poly, self.Polly_index):
                if j != 0:
                    p[k] ^= j            
            p = p[1:]
         
            while p[0] == 0:
                if len(p) == 1:
                    break
                p = p[1:]
     
            
                
        print p
            
        while p[0] == 0:
            if len(p) == 1:
                break
            p = p[1:]
    
        if (len(p)+1 < self.Polly_index[-1]):
            return p
        
        r = p[0] & (gmpy2.bit_mask(bit_len-1) ^ 0xFF)

        if r != 0:
           
            '''Last byte reduction when polynomial is equal to primitive'''
            if (len(p) == self.Polly_index[-1]):     
                red_poly = self.Polly_table[r]
            
                for j,k in zip(red_poly, self.Polly_index):
                    if (k < len(p)):
                        p[k] ^= j
                p[-1] ^= r
            else:
                '''Reduction by hand'''
                while r != 0:
                    f_bit_pos = gmpy2.bit_length(r)
                    p1 = self.pr << (f_bit_pos -1)
                    p2 = self.pr >> (9 - f_bit_pos)
                    p1 = p1[:-1]
                    p2 = p2[1:]
                    p = p ^ p1 ^ p2
                    r = p[-1] & (gmpy2.bit_mask(bit_len-1) ^ 0xFF)
                
        while p[0] == 0:
            if len(p) == 1:
                break
            p = p[1:]
 
        
        p = p[::-1]
      
        q = np.append(np.zeros(4 - len(p)%4, dtype=np.int8), p)
        q = np.array(q, dtype='uint8')
      
        q = np.getbuffer(q)
        q = np.frombuffer(q, dtype='uint32')        

        return  q     
Пример #38
0
def main():
    print("#####   Part 2   #####")
    # get the modulo we want to factor from the command line
    n = int(sys.argv[1])
    gmpy2.get_context().precision = 4096
    # variable to monitor when any process finishes
    sync = multiprocessing.Event()
    # Queue to hold the return value of the function so we can use it again in the main process
    output_q = multiprocessing.Queue()

    # check the factors of all numbers in batch
    modulo = n

    print("Attempting to find factors of", modulo)
    bit_size = gmpy2.bit_length(gmpy2.mpz(modulo))
    print("Modulo size:", bit_size)

    curr_time = datetime.now().time()
    print("Start Time:", curr_time)

    # check if n is prime
    if gmpy2.is_prime(modulo):
        print("This probably shouldn't happen but n is prime", modulo)
        return 0

    # start PROCESS_COUNT amount of processes
    for i in range(0, PROCESS_COUNT):
        process = multiprocessing.Process(target=break_primes,
                                          args=(modulo, i, sync, output_q))
        PROCESSES.append(process)
        process.start()

    # wait until any of the processes find something then kill the others
    sync.wait()
    # kill the remaining processes once the factor has been found
    for i in PROCESSES:
        if DEBUG:
            print("Killing processes")
        i.terminate()
    # join processes back to spawning process
    for i in PROCESSES:
        i.join()
    # manage the queue so we can get returns from the processes
    output_q.put('extra value to make the queue happy')
    if DEBUG:
        print("Queue Size", output_q.qsize())
    # get the value back from the process
    result = output_q.get()
    if DEBUG:
        print("Queue Size", output_q.qsize())
    # clean up the queue
    while not output_q.empty():
        if DEBUG:
            print("Cleaning")
        output_q.get_nowait()
    sync.clear()
    # print ending time
    curr_time = datetime.now().time()
    print("End Time:", curr_time)
    if DEBUG:
        print("Factor of n is:", result)
Пример #39
0
    def modulus1 (self, A):
        B = np.copy(A)
        p1 = B.view('uint8')        
        p = p1[::-1]
        
        byte_len = self.Polly_byte_len
        bit_len = self.Polly_bit_len 
  
        while p[0] == 0:
            if len(p) == 1:
                break
            p = p[1:]
       
        '''Reduction based on lookup tables'''
        
        while len(p) > byte_len:
            red_poly = self.Polly_table[p[0]]
   
            for j,k in zip(red_poly, self.Polly_index):
                if j != 0:
                    p[k] ^= j            
            p = p[1:]
         
            while p[0] == 0:
                if len(p) == 1:
                    break
                p = p[1:]
     
            
                
        print p
            
        while p[0] == 0:
            if len(p) == 1:
                break
            p = p[1:]
    
        if (len(p)+1 < self.Polly_index[-1]):
            return p
        
        r = p[0] & (gmpy2.bit_mask(bit_len-1) ^ 0xFF)

        if r != 0:
           
            '''Last byte reduction when polynomial is equal to primitive'''
            if (len(p) == self.Polly_index[-1]):     
                red_poly = self.Polly_table[r]
            
                for j,k in zip(red_poly, self.Polly_index):
                    if (k < len(p)):
                        p[k] ^= j
                p[-1] ^= r
            else:
                '''Reduction by hand'''
                while r != 0:
                    f_bit_pos = gmpy2.bit_length(r)
                    p1 = self.pr << (f_bit_pos -1)
                    p2 = self.pr >> (9 - f_bit_pos)
                    p1 = p1[:-1]
                    p2 = p2[1:]
                    p = p ^ p1 ^ p2
                    r = p[-1] & (gmpy2.bit_mask(bit_len-1) ^ 0xFF)
                
        while p[0] == 0:
            if len(p) == 1:
                break
            p = p[1:]
 
        
        p = p[::-1]
      
        q = np.append(np.zeros(4 - len(p)%4, dtype=np.int8), p)
        q = np.array(q, dtype='uint8')
      
        q = np.getbuffer(q)
        q = np.frombuffer(q, dtype='uint32')        

        return  q