Пример #1
0
    def test_corrupted_data(self):
        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
        ])
        self.trigger_processing()

        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 13, 0, 1), 1),
        ])

        with mock.patch('gnocchi.carbonara.AggregatedTimeSerie.unserialize',
                        side_effect=carbonara.InvalidData()):
            with mock.patch('gnocchi.carbonara.BoundTimeSerie.unserialize',
                            side_effect=carbonara.InvalidData()):
                self.trigger_processing()

        granularities = [
            numpy.timedelta64(1, 'D'),
            numpy.timedelta64(1, 'h'),
            numpy.timedelta64(5, 'm'),
        ]

        m = self.storage.get_measures(self.metric, granularities)
        self.assertIn((datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 1),
                      m)
        self.assertIn(
            (datetime64(2014, 1, 1, 13), numpy.timedelta64(1, 'h'), 1), m)
        self.assertIn(
            (datetime64(2014, 1, 1, 13), numpy.timedelta64(5, 'm'), 1), m)
Пример #2
0
 def treat_metric(self, metric_name, metric_type, value, sampling):
     metric_name += "|" + metric_type
     if metric_type == "ms":
         if sampling is not None:
             raise ValueError(
                 "Invalid sampling for ms: `%d`, should be none" % sampling)
         self.times[metric_name] = incoming.Measure(
             utils.dt_in_unix_ns(utils.utcnow()), value)
     elif metric_type == "g":
         if sampling is not None:
             raise ValueError(
                 "Invalid sampling for g: `%d`, should be none" % sampling)
         self.gauges[metric_name] = incoming.Measure(
             utils.dt_in_unix_ns(utils.utcnow()), value)
     elif metric_type == "c":
         sampling = 1 if sampling is None else sampling
         if metric_name in self.counters:
             current_value = self.counters[metric_name].value
         else:
             current_value = 0
         self.counters[metric_name] = incoming.Measure(
             utils.dt_in_unix_ns(utils.utcnow()),
             current_value + (value * (1 / sampling)))
     # TODO(jd) Support "set" type
     # elif metric_type == "s":
     #     pass
     else:
         raise ValueError("Unknown metric type `%s'" % metric_type)
Пример #3
0
    def treat_metric(self, host, metric_name, metric_type,
                     value):
        """Collectd.

        Statistics in collectd consist of a value list. A value list includes:
        Values, can be one of:
        Derive: used for values where a change in the value since it's last
        been read is of interest. Can be used to calculate and store a rate.
        Counter: similar to derive values, but take the possibility of a
        counter wrap around into consideration.
        Gauge: used for values that are stored as is.
        Absolute: used for counters that are reset after reading.

        """

        if metric_type == "absolute":
            if host not in self.absolute:
                self.absolute[host] = {}
            self.absolute[host][metric_name] = incoming.Measure(
                utils.dt_in_unix_ns(utils.utcnow()), value)
        elif metric_type == "gauge":
            if host not in self.gauges:
                self.gauges[host] = {}
            self.gauges[host][metric_name] = incoming.Measure(
                utils.dt_in_unix_ns(utils.utcnow()), value)
        elif metric_type == "counter" or metric_type == "derive":
            if host not in self.counters:
                self.counters[host] = {}
            self.counters[host][metric_name] = incoming.Measure(
                utils.dt_in_unix_ns(utils.utcnow()), value)
        else:
            raise ValueError("Unknown metric type '%s'" % metric_type)
Пример #4
0
    def test_delete_old_measures(self):
        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
        ])
        self.trigger_processing()

        granularities = [
            numpy.timedelta64(1, 'D'),
            numpy.timedelta64(1, 'h'),
            numpy.timedelta64(5, 'm'),
        ]

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 23.0),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ], self.storage.get_measures(self.metric, granularities))

        # One year later…
        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2015, 1, 1, 12, 0, 1), 69),
        ])
        self.trigger_processing()

        self.assertEqual([
            (datetime64(2015, 1, 1), numpy.timedelta64(1, 'D'), 69),
            (datetime64(2015, 1, 1, 12), numpy.timedelta64(1, 'h'), 69),
            (datetime64(2015, 1, 1, 12), numpy.timedelta64(5, 'm'), 69),
        ], self.storage.get_measures(self.metric, granularities))

        self.assertEqual(
            {
                carbonara.SplitKey(numpy.datetime64(1244160000, 's'),
                                   numpy.timedelta64(1, 'D')),
            },
            self.storage._list_split_keys_for_metric(self.metric, "mean",
                                                     numpy.timedelta64(1,
                                                                       'D')))
        self.assertEqual(
            {
                carbonara.SplitKey(numpy.datetime64(1412640000, 's'),
                                   numpy.timedelta64(1, 'h')),
            },
            self.storage._list_split_keys_for_metric(self.metric, "mean",
                                                     numpy.timedelta64(1,
                                                                       'h')))
        self.assertEqual(
            {
                carbonara.SplitKey(numpy.datetime64(1419120000, 's'),
                                   numpy.timedelta64(5, 'm')),
            },
            self.storage._list_split_keys_for_metric(self.metric, "mean",
                                                     numpy.timedelta64(5,
                                                                       'm')))
Пример #5
0
    def test_updated_measures(self):
        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
        ])
        self.trigger_processing()

        granularities = [
            numpy.timedelta64(1, 'D'),
            numpy.timedelta64(1, 'h'),
            numpy.timedelta64(5, 'm'),
        ]

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 55.5),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 55.5),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 42.0),
        ], self.storage.get_measures(self.metric, granularities))

        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
        ])
        self.trigger_processing()

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 23.0),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ], self.storage.get_measures(self.metric, granularities))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 69),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 69.0),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 42.0),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ],
                         self.storage.get_measures(self.metric,
                                                   granularities,
                                                   aggregation='max'))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 4),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 4),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 4.0),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ],
                         self.storage.get_measures(self.metric,
                                                   granularities,
                                                   aggregation='min'))
Пример #6
0
    def test_add_and_get_cross_metric_measures_with_holes(self):
        metric2, __ = self._create_metric()
        self.incoming.add_measures(self.metric, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
            incoming.Measure(datetime64(2014, 1, 1, 12, 5, 31), 8),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 42),
        ])
        self.incoming.add_measures(metric2, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 5), 9),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 2),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 6),
            incoming.Measure(datetime64(2014, 1, 1, 12, 13, 10), 2),
        ])
        self.trigger_processing([str(self.metric.id), str(metric2.id)])

        values = cross_metric.get_cross_metric_measures(
            self.storage, [self.metric, metric2])
        self.assertEqual([(datetime64(2014, 1, 1, 0, 0,
                                      0), numpy.timedelta64(1, 'D'), 18.875),
                          (datetime64(2014, 1, 1, 12, 0,
                                      0), numpy.timedelta64(1, 'h'), 18.875),
                          (datetime64(2014, 1, 1, 12, 0,
                                      0), numpy.timedelta64(5, 'm'), 39.0),
                          (datetime64(2014, 1, 1, 12, 5,
                                      0), numpy.timedelta64(5, 'm'), 11.0),
                          (datetime64(2014, 1, 1, 12, 10,
                                      0), numpy.timedelta64(5, 'm'), 22.0)],
                         values)
Пример #7
0
 def test_get_measure_unknown_aggregation(self):
     self.incoming.add_measures(self.metric, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
         incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
         incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
         incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
     ])
     self.assertRaises(storage.AggregationDoesNotExist,
                       self.storage.get_measures,
                       self.metric,
                       aggregation='last')
Пример #8
0
 def test_get_measure_unknown_aggregation(self):
     self.incoming.add_measures(self.metric.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
         incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
         incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
         incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
     ])
     granularities = [
         numpy.timedelta64(1, 'D'),
         numpy.timedelta64(1, 'h'),
         numpy.timedelta64(5, 'm'),
     ]
     self.assertEqual([],
                      self.storage.get_measures(self.metric,
                                                granularities,
                                                aggregation='last'))
Пример #9
0
    def test_aborted_initial_processing(self):
        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 5),
        ])
        with mock.patch.object(self.storage,
                               '_store_unaggregated_timeserie',
                               side_effect=Exception):
            try:
                self.trigger_processing()
            except Exception:
                pass

        with mock.patch('gnocchi.storage.LOG') as LOG:
            self.trigger_processing()
            self.assertFalse(LOG.error.called)

        granularities = [
            numpy.timedelta64(1, 'D'),
            numpy.timedelta64(1, 'h'),
            numpy.timedelta64(5, 'm'),
        ]

        m = self.storage.get_measures(self.metric, granularities)
        self.assertIn((datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 5.0),
                      m)
        self.assertIn(
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 5.0), m)
        self.assertIn(
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 5.0), m)
Пример #10
0
    def test_iter_on_sacks_to_process(self):
        if (self.incoming.iter_on_sacks_to_process ==
                incoming.IncomingDriver.iter_on_sacks_to_process):
            self.skipTest("Incoming driver does not implement "
                          "iter_on_sacks_to_process")

        found = threading.Event()

        sack_to_find = self.incoming.sack_for_metric(self.metric.id)

        def _iter_on_sacks_to_process():
            for sack in self.incoming.iter_on_sacks_to_process():
                self.assertIsInstance(sack, int)
                if sack == sack_to_find:
                    found.set()
                    break

        finder = threading.Thread(target=_iter_on_sacks_to_process)
        finder.daemon = True
        finder.start()

        # Try for 30s to get a notification about this sack
        for _ in range(30):
            if found.wait(timeout=1):
                break
            # NOTE(jd) Retry to send measures. It cannot be done only once as
            # there might be a race condition between the threads
            self.incoming.finish_sack_processing(sack_to_find)
            self.incoming.add_measures(self.metric, [
                incoming.Measure(numpy.datetime64("2014-01-01 12:00:01"), 69),
            ])
        else:
            self.fail("Notification for metric not received")
Пример #11
0
    def test_add_measures_big(self):
        m, __ = self._create_metric('high')
        self.incoming.add_measures(m, [
            incoming.Measure(datetime64(2014, 1, 1, 12, i, j), 100)
            for i in six.moves.range(0, 60) for j in six.moves.range(0, 60)
        ])
        self.trigger_processing([str(m.id)])

        self.assertEqual(3661, len(self.storage.get_measures(m)))
Пример #12
0
 def test_delete_nonempty_metric_unprocessed(self):
     self.incoming.add_measures(self.metric.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
     ])
     self.index.delete_metric(self.metric.id)
     self.trigger_processing()
     __, __, details = self.incoming._build_report(True)
     self.assertNotIn(str(self.metric.id), details)
     self.chef.expunge_metrics(10000, sync=True)
Пример #13
0
 def test_delete_expunge_metric(self):
     self.incoming.add_measures(self.metric.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
     ])
     self.trigger_processing()
     self.index.delete_metric(self.metric.id)
     self.storage.expunge_metrics(self.incoming, self.index, sync=True)
     self.assertRaises(indexer.NoSuchMetric, self.index.delete_metric,
                       self.metric.id)
Пример #14
0
def _inject(inc,
            coord,
            store,
            idx,
            metrics,
            measures,
            archive_policy_name="low",
            process=False,
            interval=None):
    LOG.info("Creating %d metrics", metrics)
    with utils.StopWatch() as sw:
        metric_ids = [
            idx.create_metric(uuid.uuid4(), "admin", archive_policy_name).id
            for _ in range(metrics)
        ]
    LOG.info("Created %d metrics in %.2fs", metrics, sw.elapsed())

    LOG.info("Generating %d measures per metric for %d metrics… ", measures,
             metrics)
    now = numpy.datetime64(utils.utcnow())
    with utils.StopWatch() as sw:
        measures = {
            m_id: [
                incoming.Measure(now + numpy.timedelta64(seconds=s),
                                 random.randint(-999999, 999999))
                for s in range(measures)
            ]
            for m_id in metric_ids
        }
    LOG.info("… done in %.2fs", sw.elapsed())

    interval_timer = utils.StopWatch().start()

    while True:
        interval_timer.reset()
        with utils.StopWatch() as sw:
            inc.add_measures_batch(measures)
        total_measures = sum(map(len, measures.values()))
        LOG.info("Pushed %d measures in %.2fs", total_measures, sw.elapsed())

        if process:
            c = chef.Chef(coord, inc, idx, store)

            with utils.StopWatch() as sw:
                for s in inc.iter_sacks():
                    c.process_new_measures_for_sack(s, blocking=True)
            LOG.info("Processed %d sacks in %.2fs", inc.NUM_SACKS,
                     sw.elapsed())
            LOG.info("Speed: %.2f measures/s",
                     float(total_measures) / sw.elapsed())

        if interval is None:
            break
        time.sleep(max(0, interval - interval_timer.elapsed()))

    return total_measures
Пример #15
0
 def test_measures_reporting(self):
     m2, __ = self._create_metric('medium')
     for i in six.moves.range(60):
         self.incoming.add_measures(self.metric.id, [
             incoming.Measure(datetime64(2014, 1, 1, 12, 0, i), 69),
         ])
         self.incoming.add_measures(m2.id, [
             incoming.Measure(datetime64(2014, 1, 1, 12, 0, i), 69),
         ])
     report = self.incoming.measures_report(True)
     self.assertIsInstance(report, dict)
     self.assertEqual(2, report['summary']['metrics'])
     self.assertEqual(120, report['summary']['measures'])
     self.assertIn('details', report)
     self.assertIsInstance(report['details'], dict)
     report = self.incoming.measures_report(False)
     self.assertIsInstance(report, dict)
     self.assertEqual(2, report['summary']['metrics'])
     self.assertEqual(120, report['summary']['measures'])
Пример #16
0
    def test_search_value(self):
        metric2, __ = self._create_metric()
        self.incoming.add_measures(self.metric, [
            incoming.Measure(datetime64(
                2014,
                1,
                1,
                12,
                0,
                1,
            ), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
            incoming.Measure(datetime64(2014, 1, 1, 12, 5, 31), 8),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 42),
        ])

        self.incoming.add_measures(metric2, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 5), 9),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 2),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 6),
            incoming.Measure(datetime64(2014, 1, 1, 12, 13, 10), 2),
        ])
        self.trigger_processing([str(self.metric.id), str(metric2.id)])

        self.assertEqual(
            {
                metric2: [],
                self.metric:
                [(datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 33),
                 (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 33),
                 (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69),
                 (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5,
                                                                    'm'), 42)]
            }, self.storage.search_value([metric2, self.metric], {u"≥": 30}))

        self.assertEqual(
            {
                metric2: [],
                self.metric: []
            },
            self.storage.search_value([metric2, self.metric],
                                      {u"∧": [{
                                          u"eq": 100
                                      }, {
                                          u"≠": 50
                                      }]}))
Пример #17
0
 def test_delete_nonempty_metric(self):
     self.incoming.add_measures(self.metric, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
     ])
     self.trigger_processing()
     self.storage.delete_metric(self.incoming, self.metric, sync=True)
     self.trigger_processing()
     self.assertEqual([], self.storage.get_measures(self.metric))
     self.assertRaises(storage.MetricDoesNotExist,
                       self.storage._get_unaggregated_timeserie,
                       self.metric)
Пример #18
0
    def test_add_measures_update_subset(self):
        m, m_sql = self._create_metric('medium')
        measures = [
            incoming.Measure(datetime64(2014, 1, 6, i, j, 0), 100)
            for i in six.moves.range(2) for j in six.moves.range(0, 60, 2)
        ]
        self.incoming.add_measures(m.id, measures)
        self.trigger_processing([str(m.id)])

        # add measure to end, in same aggregate time as last point.
        new_point = datetime64(2014, 1, 6, 1, 58, 1)
        self.incoming.add_measures(m.id, [incoming.Measure(new_point, 100)])

        with mock.patch.object(self.incoming, 'add_measures') as c:
            self.trigger_processing([str(m.id)])
        for __, args, __ in c.mock_calls:
            self.assertEqual(
                list(args[3])[0][0],
                carbonara.round_timestamp(new_point,
                                          args[1].granularity * 10e8))
Пример #19
0
 def test_list_metric_with_measures_to_process(self):
     metrics = tests_utils.list_all_incoming_metrics(self.incoming)
     self.assertEqual(set(), metrics)
     self.incoming.add_measures(self.metric.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
     ])
     metrics = tests_utils.list_all_incoming_metrics(self.incoming)
     self.assertEqual(set([str(self.metric.id)]), metrics)
     self.trigger_processing()
     metrics = tests_utils.list_all_incoming_metrics(self.incoming)
     self.assertEqual(set([]), metrics)
Пример #20
0
    def todo():
        metric = index.create_metric(
            uuid.uuid4(),
            creator=conf.creator,
            archive_policy_name=conf.archive_policy_name)

        for _ in six.moves.range(conf.batch_of_measures):
            measures = [
                incoming.Measure(
                    utils.dt_in_unix_ns(utils.utcnow()), random.random())
                for __ in six.moves.range(conf.measures_per_batch)]
            instore.add_measures(metric, measures)
Пример #21
0
 def on_message(self, event):
     json_message = ujson.loads(event.message.body)
     timestamp = utils.dt_in_unix_ns(utils.utcnow())
     measures_by_host_and_name = sorted(
         ((message["host"], self._serialize_identifier(index,
                                                       message), value)
          for message in json_message
          for index, value in enumerate(message["values"])))
     for (host,
          name), values in itertools.groupby(measures_by_host_and_name,
                                             key=lambda x: x[0:2]):
         measures = (incoming.Measure(timestamp, v[2]) for v in values)
         self.processor.add_measures(host, name, measures)
Пример #22
0
 def test_resize_policy(self):
     name = str(uuid.uuid4())
     ap = archive_policy.ArchivePolicy(name, 0, [(3, 5)])
     self.index.create_archive_policy(ap)
     m = self.index.create_metric(uuid.uuid4(), str(uuid.uuid4()), name)
     m = self.index.list_metrics(attribute_filter={"=": {"id": m.id}})[0]
     self.incoming.add_measures(m.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 0), 1),
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 5), 1),
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 10), 1),
     ])
     self.trigger_processing([str(m.id)])
     self.assertEqual([
         (datetime64(2014, 1, 1, 12, 0, 0), numpy.timedelta64(5, 's'), 1),
         (datetime64(2014, 1, 1, 12, 0, 5), numpy.timedelta64(5, 's'), 1),
         (datetime64(2014, 1, 1, 12, 0, 10), numpy.timedelta64(5, 's'), 1),
     ], self.storage.get_measures(m, [numpy.timedelta64(5, 's')]))
     # expand to more points
     self.index.update_archive_policy(
         name, [archive_policy.ArchivePolicyItem(granularity=5, points=6)])
     m = self.index.list_metrics(attribute_filter={"=": {"id": m.id}})[0]
     self.incoming.add_measures(m.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 15), 1),
     ])
     self.trigger_processing([str(m.id)])
     self.assertEqual([
         (datetime64(2014, 1, 1, 12, 0, 0), numpy.timedelta64(5, 's'), 1),
         (datetime64(2014, 1, 1, 12, 0, 5), numpy.timedelta64(5, 's'), 1),
         (datetime64(2014, 1, 1, 12, 0, 10), numpy.timedelta64(5, 's'), 1),
         (datetime64(2014, 1, 1, 12, 0, 15), numpy.timedelta64(5, 's'), 1),
     ], self.storage.get_measures(m, [numpy.timedelta64(5, 's')]))
     # shrink timespan
     self.index.update_archive_policy(
         name, [archive_policy.ArchivePolicyItem(granularity=5, points=2)])
     m = self.index.list_metrics(attribute_filter={"=": {"id": m.id}})[0]
     self.assertEqual([
         (datetime64(2014, 1, 1, 12, 0, 10), numpy.timedelta64(5, 's'), 1),
         (datetime64(2014, 1, 1, 12, 0, 15), numpy.timedelta64(5, 's'), 1),
     ], self.storage.get_measures(m, [numpy.timedelta64(5, 's')]))
Пример #23
0
    def _test_create_metric_and_data(self, data, spacing):
        metric = indexer.Metric(
            uuid.uuid4(), self.archive_policies['medium'])
        start_time = utils.datetime_utc(2014, 1, 1, 12)
        incr = datetime.timedelta(seconds=spacing)
        measures = [incoming.Measure(
            utils.dt_in_unix_ns(start_time + incr * n), val)
            for n, val in enumerate(data)]
        self.index.create_metric(metric.id, str(uuid.uuid4()), 'medium')
        self.incoming.add_measures(metric, measures)
        metrics = tests_utils.list_all_incoming_metrics(self.incoming)
        self.storage.process_new_measures(
            self.index, self.incoming, metrics, sync=True)

        return metric
Пример #24
0
    def test_add_measures_update_subset_split(self):
        m, m_sql = self._create_metric('medium')
        measures = [
            incoming.Measure(datetime64(2014, 1, 6, i, j, 0), 100)
            for i in six.moves.range(2) for j in six.moves.range(0, 60, 2)
        ]
        self.incoming.add_measures(m.id, measures)
        self.trigger_processing([str(m.id)])

        # add measure to end, in same aggregate time as last point.
        self.incoming.add_measures(
            m.id, [incoming.Measure(datetime64(2014, 1, 6, 1, 58, 1), 100)])

        with mock.patch.object(self.storage, '_store_metric_measures') as c:
            # should only resample last aggregate
            self.trigger_processing([str(m.id)])
        count = 0
        for call in c.mock_calls:
            # policy is 60 points and split is 48. should only update 2nd half
            args = call[1]
            if (args[0] == m_sql and args[2] == 'mean'
                    and args[1].sampling == numpy.timedelta64(1, 'm')):
                count += 1
        self.assertEqual(1, count)
Пример #25
0
 def test_delete_nonempty_metric(self):
     self.incoming.add_measures(self.metric.id, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
     ])
     self.trigger_processing()
     self.storage._delete_metric(self.metric)
     self.trigger_processing()
     self.assertEqual([],
                      self.storage.get_measures(self.metric, [
                          numpy.timedelta64(1, 'D'),
                          numpy.timedelta64(1, 'h'),
                          numpy.timedelta64(5, 'm'),
                      ]))
     self.assertRaises(storage.MetricDoesNotExist,
                       self.storage._get_unaggregated_timeserie,
                       self.metric)
Пример #26
0
 def test_get_cross_metric_measures_unknown_aggregation(self):
     metric2 = indexer.Metric(uuid.uuid4(), self.archive_policies['low'])
     self.incoming.add_measures(self.metric, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
         incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
         incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
         incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
     ])
     self.incoming.add_measures(metric2, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
         incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
         incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
         incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
     ])
     self.assertRaises(storage.AggregationDoesNotExist,
                       cross_metric.get_cross_metric_measures,
                       self.storage, [self.metric, metric2],
                       aggregation='last')
Пример #27
0
 def test_get_cross_metric_measures_unknown_granularity(self):
     metric2 = indexer.Metric(uuid.uuid4(), self.archive_policies['low'])
     self.incoming.add_measures(self.metric, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
         incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
         incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
         incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
     ])
     self.incoming.add_measures(metric2, [
         incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
         incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
         incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
         incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
     ])
     self.assertRaises(storage.GranularityDoesNotExist,
                       cross_metric.get_cross_metric_measures,
                       self.storage, [self.metric, metric2],
                       granularity=numpy.timedelta64(12345456, 'ms'))
Пример #28
0
    def test_add_and_get_cross_metric_measures_different_archives(self):
        metric2 = indexer.Metric(uuid.uuid4(),
                                 self.archive_policies['no_granularity_match'])
        self.incoming.add_measures(self.metric, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
        ])
        self.incoming.add_measures(metric2, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
        ])

        self.assertRaises(cross_metric.MetricUnaggregatable,
                          cross_metric.get_cross_metric_measures, self.storage,
                          [self.metric, metric2])
Пример #29
0
    def post_write(self, db="influxdb"):

        creator = pecan.request.auth_helper.get_current_user(pecan.request)
        tag_to_rid = pecan.request.headers.get(
            "X-Gnocchi-InfluxDB-Tag-Resource-ID", self.DEFAULT_TAG_RESOURCE_ID)

        while True:
            encoding, chunk = self._write_get_lines()

            # If chunk is empty then this is over.
            if not chunk:
                break

            # Compute now on a per-chunk basis
            now = numpy.datetime64(int(time.time() * 10e8), 'ns')

            # resources = { resource_id: {
            #     metric_name: [ incoming.Measure(t, v), …], …
            #   }, …
            # }
            resources = collections.defaultdict(
                lambda: collections.defaultdict(list))
            for line_number, line in enumerate(chunk.split(b"\n")):
                # Ignore empty lines
                if not line:
                    continue

                try:
                    measurement, tags, fields, timestamp = (
                        line_protocol.parseString(line.decode()))
                except (UnicodeDecodeError, SyntaxError,
                        pyparsing.ParseException):
                    api.abort(
                        400, {
                            "cause":
                            "Value error",
                            "detail":
                            "line",
                            "reason":
                            "Unable to parse line %d" % (line_number + 1),
                        })

                if timestamp is None:
                    timestamp = now

                try:
                    resource_id = tags.pop(tag_to_rid)
                except KeyError:
                    api.abort(
                        400, {
                            "cause":
                            "Value error",
                            "detail":
                            "key",
                            "reason":
                            "Unable to find key `%s' in tags" % (tag_to_rid),
                        })

                tags_str = (("@" if tags else "") + ",".join(
                    ("%s=%s" % (k, tags[k])) for k in sorted(tags)))

                for field_name, field_value in six.iteritems(fields):
                    if isinstance(field_value, str):
                        # We do not support field value that are not numerical
                        continue

                    # Metric name is the:
                    # <measurement>.<field_key>@<tag_key>=<tag_value>,…
                    # with tag ordered
                    # Replace "/" with "_" because Gnocchi does not support /
                    # in metric names
                    metric_name = (measurement + "." + field_name +
                                   tags_str).replace("/", "_")

                    resources[resource_id][metric_name].append(
                        incoming.Measure(timestamp, field_value))

            measures_to_batch = {}
            for resource_name, metrics_and_measures in six.iteritems(
                    resources):
                resource_name = resource_name
                resource_id = utils.ResourceUUID(resource_name,
                                                 creator=creator)
                LOG.debug("Getting metrics from resource `%s'", resource_name)
                timeout = pecan.request.conf.api.operation_timeout
                metrics = (api.get_or_create_resource_and_metrics.retry_with(
                    stop=tenacity.stop_after_delay(timeout))(
                        creator, resource_id, resource_name,
                        metrics_and_measures.keys(), {}, db))

                for metric in metrics:
                    api.enforce("post measures", metric)

                measures_to_batch.update(
                    dict((metric.id, metrics_and_measures[metric.name])
                         for metric in metrics
                         if metric.name in metrics_and_measures))

            LOG.debug("Add measures batch for %d metrics",
                      len(measures_to_batch))
            pecan.request.incoming.add_measures_batch(measures_to_batch)
            pecan.response.status = 204

            if encoding != "chunked":
                return
Пример #30
0
    def test_add_and_get_measures(self):
        self.incoming.add_measures(self.metric.id, [
            incoming.Measure(datetime64(2014, 1, 1, 12, 0, 1), 69),
            incoming.Measure(datetime64(2014, 1, 1, 12, 7, 31), 42),
            incoming.Measure(datetime64(2014, 1, 1, 12, 9, 31), 4),
            incoming.Measure(datetime64(2014, 1, 1, 12, 12, 45), 44),
        ])
        self.trigger_processing()

        granularities = [
            numpy.timedelta64(1, 'D'),
            numpy.timedelta64(1, 'h'),
            numpy.timedelta64(5, 'm'),
        ]

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 23.0),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ], self.storage.get_measures(self.metric, granularities))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ],
                         self.storage.get_measures(self.metric,
                                                   granularities,
                                                   from_timestamp=datetime64(
                                                       2014, 1, 1, 12, 10, 0)))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
            (datetime64(2014, 1, 1, 12, 5), numpy.timedelta64(5, 'm'), 23.0),
        ],
                         self.storage.get_measures(self.metric,
                                                   granularities,
                                                   to_timestamp=datetime64(
                                                       2014, 1, 1, 12, 6, 0)))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12, 10), numpy.timedelta64(5, 'm'), 44.0),
        ],
                         self.storage.get_measures(
                             self.metric,
                             granularities,
                             to_timestamp=datetime64(2014, 1, 1, 12, 10, 10),
                             from_timestamp=datetime64(2014, 1, 1, 12, 10,
                                                       10)))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
        ],
                         self.storage.get_measures(
                             self.metric,
                             granularities,
                             from_timestamp=datetime64(2014, 1, 1, 12, 0, 0),
                             to_timestamp=datetime64(2014, 1, 1, 12, 0, 2)))

        self.assertEqual([
            (datetime64(2014, 1, 1), numpy.timedelta64(1, 'D'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
        ],
                         self.storage.get_measures(
                             self.metric,
                             granularities,
                             from_timestamp=datetime64(2014, 1, 1, 12),
                             to_timestamp=datetime64(2014, 1, 1, 12, 0, 2)))

        self.assertEqual([
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(1, 'h'), 39.75),
        ],
                         self.storage.get_measures(
                             self.metric,
                             from_timestamp=datetime64(2014, 1, 1, 12, 0, 0),
                             to_timestamp=datetime64(2014, 1, 1, 12, 0, 2),
                             granularities=[numpy.timedelta64(1, 'h')]))

        self.assertEqual([
            (datetime64(2014, 1, 1, 12), numpy.timedelta64(5, 'm'), 69.0),
        ],
                         self.storage.get_measures(
                             self.metric,
                             from_timestamp=datetime64(2014, 1, 1, 12, 0, 0),
                             to_timestamp=datetime64(2014, 1, 1, 12, 0, 2),
                             granularities=[numpy.timedelta64(5, 'm')]))

        self.assertRaises(storage.AggregationDoesNotExist,
                          self.storage.get_measures,
                          self.metric,
                          granularities=[numpy.timedelta64(42, 's')])