Пример #1
0
def make_models():
    print 'initializing the model'

    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    models = []
    start_time = datetime(2012, 10, 27, 0, 30)
    duration_hrs=23
    time_step=450
    num_steps = duration_hrs * 3600 / time_step
    names = [
             'Euler',
             'Trapezoid',
             'RK4',
             ]

    mapfile = get_datafile(os.path.join(base_dir, 'long_beach.bna'))
    print 'gen map'
    map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds
    fn = ('00_dir_roms_display.ncml.nc4')
    curr = GridCurrent.from_netCDF(filename=fn)
    models = []
    for method in names:

        mod = Model(start_time=start_time,
                    duration=timedelta(hours=duration_hrs),
                    time_step=time_step)

        mod.map = map
        spill = point_line_release_spill(num_elements=1000,
                                         start_position=(-74.1,
                                                      39.7525,
                                                      0.0),
                                         release_time=start_time)
        mod.spills += spill
        mod.movers += RandomMover(diffusion_coef=100)
        mod.movers += PyGridCurrentMover(current=curr, default_num_method=method)

        images_dir = method + '-' + str(time_step / 60) + 'min-' + str(num_steps) + 'steps'
        renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
        renderer.delay = 25
#         renderer.add_grid(curr.grid)
        mod.outputters += renderer


        netCDF_fn = os.path.join(base_dir, images_dir + '.nc')
        mod.outputters += NetCDFOutput(netCDF_fn, which_data='all')
        models.append(mod)

    print 'returning models'
    return models
Пример #2
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 9, 24, 1, 1)
    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours=47),
                  time_step=300)

    mapfile = get_datafile(os.path.join(base_dir, 'columbia_river.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(600, 1200))
    renderer.delay = 15
    #     renderer.viewport = ((-123.35, 45.6), (-122.68, 46.13))
    #     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = continuous_release_spill(initial_elements=10000,
                                      num_elements=400,
                                      start_position=(-122.625, 45.609, 0.0),
                                      release_time=start_time,
                                      end_position=(-122.6, 45.605, 0.0),
                                      end_release_time=start_time +
                                      timedelta(seconds=36000))

    model.spills += spill1

    print 'adding a RandomMover:'
    #     model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a wind mover:'
    series = []
    for i in [(1, (5, 90)), (7, (5, 180)), (13, (5, 270)), (19, (5, 0)),
              (25, (5, 90))]:
        series.append((start_time + timedelta(hours=i[0]), i[1]))

    wind1 = WindTS.constant_wind('wind1', 0.5, 0, 'm/s')
    wind2 = WindTS(timeseries=series, units='knots', extrapolate=True)

    #     wind = Wind(timeseries=series, units='knots')

    model.movers += PyWindMover(wind=wind1)

    print 'adding a current mover:'

    #     url = ('http://geoport.whoi.edu/thredds/dodsC/clay/usgs/users/jcwarner/Projects/Sandy/triple_nest/00_dir_NYB05.ncml')
    #     test = GridCurrent.from_netCDF(name='gc1', filename=url)

    curr_file = get_datafile('COOPSu_CREOFS24.nc')
    curr = GridCurrent.from_netCDF(
        name='gc2',
        filename=curr_file,
    )

    c_mover = PyGridCurrentMover(curr,
                                 extrapolate=True,
                                 default_num_method='Trapezoid')

    #     renderer.add_grid(curr.grid)
    #     renderer.add_vec_prop(curr)
    model.movers += c_mover

    print 'adding a random mover'
    model.movers += RandomMover(diffusion_coef=1000)

    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover

    return model
Пример #3
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2016, 4, 5, 18, 0)


    model = Model(start_time=start_time,
                  duration=timedelta(hours=12),
                  time_step=.25*3600)

    mapfile = (os.path.join(base_dir, 'coast.bna'))

    print 'adding the map'
    '''TODO: sort out MapFromBna's map_bounds parameter...
    it does nothing right now, and the spill is out of bounds'''
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
#     renderer.viewport = ((-73.5, 40.5), (-73.1, 40.75))
#     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73888,
                                                      27.5475,
                                                      0.0),
                                      release_time=start_time,
                                      end_release_time=start_time+timedelta(hours=24))
    spill2 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73888,
                                                      27.545,
                                                      0.0),
                                      release_time=start_time,
                                      end_release_time=start_time+timedelta(hours=24))
    spill3 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73888,
                                                      27.5425,
                                                      0.0),
                                      release_time=start_time,
                                      end_release_time=start_time+timedelta(hours=24))
    spill4 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73988,
                                                      27.5475,
                                                      0.0),
                                      release_time=start_time,
                                      end_release_time=start_time+timedelta(hours=24))

    spill5 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73988,
                                                      27.5450,
                                                      0.0),
                                      release_time=start_time,
                                      end_release_time=start_time+timedelta(hours=24))

    spill6 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73988,
                                                      27.5425,
                                                      0.0),
                                      release_time=start_time,
                                      end_release_time=start_time+timedelta(hours=24))


    model.spills += spill1
    model.spills += spill2
    model.spills += spill3
    model.spills += spill4
    model.spills += spill5
    model.spills += spill6
    model.spills._spill_container.spills.remove(0)


    print 'adding a current mover:'

    fn = 'nos.tbofs.fields.n000.20160406.t00z_sgrid.nc'
    #fn = 'dbofs_newFormat.nc'

    cf = GridCurrent.from_netCDF(filename=fn)
    u_mover = PyGridCurrentMover(cf, extrapolate=True)
    #u_mover = GridCurrentMover(fn)
    renderer.add_grid(cf.grid)
#     renderer.add_vec_prop(cf)
    model.movers += u_mover

    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover

    return model
Пример #4
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2016, 4, 5, 18, 0)

    model = Model(start_time=start_time,
                  duration=timedelta(hours=12),
                  time_step=.25 * 3600)

    mapfile = (os.path.join(base_dir, 'coast.bna'))

    print 'adding the map'
    '''TODO: sort out MapFromBna's map_bounds parameter...
    it does nothing right now, and the spill is out of bounds'''
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(mapfile, images_dir, image_size=(1024, 768))
    #     renderer.viewport = ((-73.5, 40.5), (-73.1, 40.75))
    #     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73888, 27.5475, 0.0),
                                      release_time=start_time,
                                      end_release_time=start_time +
                                      timedelta(hours=24))
    spill2 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73888, 27.545, 0.0),
                                      release_time=start_time,
                                      end_release_time=start_time +
                                      timedelta(hours=24))
    spill3 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73888, 27.5425, 0.0),
                                      release_time=start_time,
                                      end_release_time=start_time +
                                      timedelta(hours=24))
    spill4 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73988, 27.5475, 0.0),
                                      release_time=start_time,
                                      end_release_time=start_time +
                                      timedelta(hours=24))

    spill5 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73988, 27.5450, 0.0),
                                      release_time=start_time,
                                      end_release_time=start_time +
                                      timedelta(hours=24))

    spill6 = point_line_release_spill(num_elements=500,
                                      start_position=(-82.73988, 27.5425, 0.0),
                                      release_time=start_time,
                                      end_release_time=start_time +
                                      timedelta(hours=24))

    model.spills += spill1
    model.spills += spill2
    model.spills += spill3
    model.spills += spill4
    model.spills += spill5
    model.spills += spill6
    model.spills._spill_container.spills.remove(0)

    print 'adding a current mover:'

    fn = 'nos.tbofs.fields.n000.20160406.t00z_sgrid.nc'
    #fn = 'dbofs_newFormat.nc'

    cf = GridCurrent.from_netCDF(filename=fn)
    u_mover = PyGridCurrentMover(cf, extrapolate=True)
    #u_mover = GridCurrentMover(fn)
    renderer.add_grid(cf.grid)
    #     renderer.add_vec_prop(cf)
    model.movers += u_mover

    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover

    return model
Пример #5
0
def make_model(images_dir=os.path.join(base_dir, 'images')):
    print 'initializing the model'

    start_time = datetime(2015, 9, 24, 1, 1)
    # start_time = datetime(2015, 12, 18, 06, 01)

    # 1 day of data in file
    # 1/2 hr in seconds
    model = Model(start_time=start_time,
                  duration=timedelta(hours=47),
                  time_step=300)

    mapfile = get_datafile(os.path.join(base_dir, 'columbia_river.bna'))

    print 'adding the map'
    model.map = MapFromBNA(mapfile, refloat_halflife=0.0)  # seconds

    # draw_ontop can be 'uncertain' or 'forecast'
    # 'forecast' LEs are in black, and 'uncertain' are in red
    # default is 'forecast' LEs draw on top
    renderer = Renderer(
        mapfile, images_dir, image_size=(600, 1200))
    renderer.delay=15
#     renderer.viewport = ((-123.35, 45.6), (-122.68, 46.13))
#     renderer.viewport = ((-122.9, 45.6), (-122.6, 46.0))

    print 'adding outputters'
    model.outputters += renderer

    print 'adding a spill'
    # for now subsurface spill stays on initial layer
    # - will need diffusion and rise velocity
    # - wind doesn't act
    # - start_position = (-76.126872, 37.680952, 5.0),
    spill1 = continuous_release_spill(initial_elements=10000,
                                      num_elements=400,
                                      start_position=(-122.625,
                                                      45.609,
                                                      0.0),
                                      release_time=start_time,
                                      end_position=(-122.6, 45.605, 0.0),
                                      end_release_time=start_time + timedelta(seconds=36000))

    model.spills += spill1

    print 'adding a RandomMover:'
#     model.movers += RandomMover(diffusion_coef=10000)

    print 'adding a wind mover:'
    series = []
    for i in [(1, (5, 90)), (7, (5, 180)), (13, (5, 270)), (19, (5, 0)), (25, (5, 90))]:
        series.append((start_time + timedelta(hours=i[0]), i[1]))

    wind1 = WindTS.constant_wind('wind1', 0.5, 0, 'm/s')
    wind2 = WindTS(timeseries = series, units='knots', extrapolate=True)

#     wind = Wind(timeseries=series, units='knots')

    model.movers += PyWindMover(wind=wind1)

    print 'adding a current mover:'

#     url = ('http://geoport.whoi.edu/thredds/dodsC/clay/usgs/users/jcwarner/Projects/Sandy/triple_nest/00_dir_NYB05.ncml')
#     test = GridCurrent.from_netCDF(name='gc1', filename=url)

    curr_file = get_datafile('COOPSu_CREOFS24.nc')
    curr = GridCurrent.from_netCDF(name='gc2', filename=curr_file,)

    c_mover = PyGridCurrentMover(curr, extrapolate = True, default_num_method='Trapezoid')

#     renderer.add_grid(curr.grid)
#     renderer.add_vec_prop(curr)
    model.movers += c_mover

    print 'adding a random mover'
    model.movers += RandomMover(diffusion_coef=1000)


    # curr_file = get_datafile(os.path.join(base_dir, 'COOPSu_CREOFS24.nc'))
    # c_mover = GridCurrentMover(curr_file)
    # model.movers += c_mover

    return model
Пример #6
0
# vy = 1/y[np.newaxis,:]
# vx[vx == np.inf] = 0
# vy[vy == np.inf] = 0
# vx = vx/mag *30
# vy = vy/mag *30
# v_x = vx.copy()
# v_y - vy.copy()
# sl = [0,0:30,31:61]
# v_x = vx[:,0] * np.cos(angs) - value[:,1] * np.sin(angs)
# y = value[:,0] * np.sin(angs) + value[:,1] * np.cos(angs)
# value[:,0] = x
# value[:,1] = y

vels_x = GriddedProp(name='v_x', units='m/s', time=[t], grid=g, data=vx)
vels_y = GriddedProp(name='v_y', units='m/s', time=[t], grid=g, data=vy)
vg = GridCurrent(variables=[vels_y, vels_x], time=[t], grid=g, units='m/s')
point = np.zeros((1, 2))
print vg.at(point, t)

# define base directory
base_dir = os.path.dirname(__file__)


def make_model():
    duration_hrs = 48
    time_step = 900
    num_steps = duration_hrs * 3600 / time_step
    mod = Model(start_time=t,
                duration=timedelta(hours=duration_hrs),
                time_step=time_step)
Пример #7
0
# vy = 1/y[np.newaxis,:]
# vx[vx == np.inf] = 0
# vy[vy == np.inf] = 0
# vx = vx/mag *30
# vy = vy/mag *30
# v_x = vx.copy()
# v_y - vy.copy()
# sl = [0,0:30,31:61]
# v_x = vx[:,0] * np.cos(angs) - value[:,1] * np.sin(angs)
# y = value[:,0] * np.sin(angs) + value[:,1] * np.cos(angs)
# value[:,0] = x
# value[:,1] = y

vels_x = GriddedProp(name='v_x',units='m/s',time=[t], grid=g, data=vx)
vels_y = GriddedProp(name='v_y',units='m/s',time=[t], grid=g, data=vy)
vg = GridCurrent(variables = [vels_y, vels_x], time=[t], grid=g, units='m/s')
point = np.zeros((1,2))
print vg.at(point,t)

# define base directory
base_dir = os.path.dirname(__file__)

def make_model():
    duration_hrs=48
    time_step=900
    num_steps = duration_hrs * 3600 / time_step
    mod = Model(start_time=t,
                duration=timedelta(hours=duration_hrs),
                time_step=time_step)

    spill = point_line_release_spill(num_elements=1000,