def test_003(self): data = range(1,9) self.src = blocks.vector_source_i(data, True) self.probe = blocks.ctrlport_probe2_i("samples","Integers", len(data), gr.DISPNULL) probe_name = self.probe.alias() self.tb.connect(self.src, self.probe) self.tb.start() expected_result = [1, 2, 3, 4, 5, 6, 7, 8,] # Make sure we have time for flowgraph to run time.sleep(0.1) # Get available endpoint ep = gr.rpcmanager_get().endpoints()[0] # Initialize a simple Ice client from endpoint ic = Ice.initialize(sys.argv) base = ic.stringToProxy(ep) radio = GNURadio.ControlPortPrx.checkedCast(base) # Get all exported knobs ret = radio.get([probe_name + "::samples"]) for name in ret.keys(): # Get data in probe, which might be offset; find the # beginning and unwrap. result = ret[name].value i = result.index(1.0) result = result[i:] + result[0:i] self.assertEqual(expected_result, result) self.tb.stop()
def test_003(self): data = list(range(1, 9)) self.src = blocks.vector_source_i(data, True) self.probe = blocks.ctrlport_probe2_i("samples", "Integers", len(data), gr.DISPNULL) probe_name = self.probe.alias() self.tb.connect(self.src, self.probe) self.tb.start() expected_result = [ 1, 2, 3, 4, 5, 6, 7, 8, ] # Make sure we have time for flowgraph to run time.sleep(0.1) # Get available endpoint ep = gr.rpcmanager_get().endpoints()[0] hostname = re.search(r"-h (\S+|\d+\.\d+\.\d+\.\d+)", ep).group(1) portnum = re.search(r"-p (\d+)", ep).group(1) # Initialize a simple ControlPort client from endpoint from gnuradio.ctrlport.GNURadioControlPortClient import GNURadioControlPortClient radiosys = GNURadioControlPortClient(hostname, portnum, rpcmethod='thrift') radio = radiosys.client # Get all exported knobs ret = radio.getKnobs([probe_name + "::samples"]) for name in list(ret.keys()): # Get data in probe, which might be offset; find the # beginning and unwrap. result = ret[name].value i = result.index(1.0) result = result[i:] + result[0:i] self.assertEqual(expected_result, result) self.tb.stop() self.tb.wait()