def run_test (f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM)
    mod = gr.chunks_to_symbols_sf(tot_constellation,dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s();

    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics)
    tb.connect (metrics,va,fsmi2s,dst)

    tb.run()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    #print ntotal,nright,runlength

    return (ntotal,ntotal-nright)
Пример #2
0
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
    tb = gr.top_block ()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc = trellis.sccc_encoder_ss(fo,0,fi,0,interleaver,K)
    mod = gr.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    dec = trellis.sccc_decoder_combined_fs(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN,1.0)
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()
    
    #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    #tb.connect (add,head)
    #tb.connect (tail,fsmi2s,dst)
    tb.connect (add,dec,fsmi2s,dst)

    tb.run()
 
    #print enc_out.ST(), enc_in.ST()
    
    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    return (ntotal,ntotal-nright)
Пример #3
0
def run_test (f,Kb,bitspersymbol,K,dimensionality,tot_constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the FSM)
    mod = gr.chunks_to_symbols_sf(tot_constellation,dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
    
    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s(); 
    
    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics)
    tb.connect (metrics,va,fsmi2s,dst)
    
    tb.run()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    #print ntotal,nright,runlength 
    
    return (ntotal,ntotal-nright)
Пример #4
0
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed):
    tb = gr.top_block()

    # TX
    # packet = [0]*Kb
    # for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0
    # packet[i] = random.randint(0, 1) # random 0s and 1s
    # src = gr.vector_source_s(packet,False)
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    # b2s = gr.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f, 0)  # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics = trellis.metrics_f(
        f.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    # s2b = gr.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
    # dst = gr.vector_sink_s();
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc, mod)
    # tb.connect (src,b2s,s2fsmi,enc,mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics)
    tb.connect(metrics, va, fsmi2s, dst)
    # tb.connect (metrics,va,fsmi2s,s2b,dst)

    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    # print "final state = " , enc.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    # ntotal = len(packet)
    # if len(dst.data()) != ntotal:
    # print "Error: not enough data\n"
    # nright = 0;
    # for i in range(ntotal):
    # if packet[i]==dst.data()[i]:
    # nright=nright+1
    # else:
    # print "Error in ", i
    return (ntotal, ntotal - nright)
Пример #5
0
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()


    # TX
    #packet = [0]*Kb
    #for i in range(Kb-1*16): # last 16 bits = 0 to drive the final state to 0
        #packet[i] = random.randint(0, 1) # random 0s and 1s
    #src = gr.vector_source_s(packet,False)
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    #b2s = gr.unpacked_to_packed_ss(1,gr.GR_MSB_FIRST) # pack bits in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    #s2b = gr.packed_to_unpacked_ss(1,gr.GR_MSB_FIRST) # unpack shorts to bits
    #dst = gr.vector_sink_s(); 
    dst = gr.check_lfsr_32k_s()
    

    tb.connect (src,src_head,s2fsmi,enc,mod)
    #tb.connect (src,b2s,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics)
    tb.connect (metrics,va,fsmi2s,dst)
    #tb.connect (metrics,va,fsmi2s,s2b,dst)
    

    tb.run()
    
    # A bit of cheating: run the program once and print the 
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    #ntotal = len(packet)
    #if len(dst.data()) != ntotal:
        #print "Error: not enough data\n"
    #nright = 0;
    #for i in range(ntotal):
        #if packet[i]==dst.data()[i]:
            #nright=nright+1
        #else:
            #print "Error in ", i
    return (ntotal,ntotal-nright)
Пример #6
0
    def test_002(self):
        # Test get methods
        set_type = gr.GR_GAUSSIAN
        set_ampl = 10
        op = gr.noise_source_f(set_type, set_ampl, 10)
        get_type = op.type()
        get_ampl = op.amplitude()

        self.assertEqual(get_type, set_type)
        self.assertEqual(get_ampl, set_ampl)
Пример #7
0
    def test_002(self):
        # Test get methods
        set_type = gr.GR_GAUSSIAN
        set_ampl = 10
        op = gr.noise_source_f(set_type, set_ampl, 10)
        get_type = op.type
        get_ampl = op.amplitude

        self.assertEqual(get_type, set_type)
        self.assertEqual(get_ampl, set_ampl)
Пример #8
0
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed,
             P):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16 * P)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the FSM input cardinality
    s2p = gr.stream_to_streams(gr.sizeof_short, P)  # serial to parallel
    enc = trellis.encoder_ss(f, 0)  # initiali state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = []
    noise = []
    for i in range(P):
        add.append(gr.add_ff())
        noise.append(gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2),
                                       seed))

    # RX
    metrics = trellis.metrics_f(
        f.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(
        f, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    p2s = gr.streams_to_stream(gr.sizeof_short, P)  # parallel to serial
    fsmi2s = gr.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, s2p)
    for i in range(P):
        tb.connect((s2p, i), (enc, i), (mod, i))
        tb.connect((mod, i), (add[i], 0))
        tb.connect(noise[i], (add[i], 1))
        tb.connect(add[i], (metrics, i))
        tb.connect((metrics, i), (va, i), (p2s, i))
    tb.connect(p2s, fsmi2s, dst)

    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state.
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()

    return (ntotal, ntotal - nright)
def run_test(f, Kb, bitspersymbol, K, channel, modulation, dimensionality,
             tot_constellation, N0, seed):
    tb = gr.top_block()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0] * (K + 2 * L)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1)  # random symbols
    for i in range(L):  # first/last L symbols set to 0
        packet[i] = 0
        packet[len(packet) - i - 1] = 0
    src = gr.vector_source_s(packet, False)
    mod = gr.chunks_to_symbols_sf(modulation[1], modulation[0])

    # CHANNEL
    isi = gr.fir_filter_fff(1, channel)
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    skip = gr.skiphead(
        gr.sizeof_float, L
    )  # skip the first L samples since you know they are coming from the L zero symbols
    #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    #va = trellis.viterbi_s(f,K+L,0,0) # Put -1 if the Initial/Final states are not set.
    va = trellis.viterbi_combined_s(
        f, K + L, 0, 0, dimensionality, tot_constellation,
        trellis.TRELLIS_EUCLIDEAN
    )  # using viterbi_combined_s instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
    dst = gr.vector_sink_s()

    tb.connect(src, mod)
    tb.connect(mod, isi, (add, 0))
    tb.connect(noise, (add, 1))
    #tb.connect (add,metrics)
    #tb.connect (metrics,va,dst)
    tb.connect(add, skip, va, dst)

    tb.run()

    data = dst.data()
    ntotal = len(data) - L
    nright = 0
    for i in range(ntotal):
        if packet[i + L] == data[i]:
            nright = nright + 1
        #else:
        #print "Error in ", i

    return (ntotal, ntotal - nright)
Пример #10
0
    def __init__(self):
        gr.top_block.__init__(self)

        Rs = 8000
        f1 = 100
        f2 = 200

        npts = 2048

        self.qapp = QtGui.QApplication(sys.argv)
        
        src1 = gr.sig_source_f(Rs, gr.GR_SIN_WAVE, f1, 0.1, 0)
        src2 = gr.sig_source_f(Rs, gr.GR_SIN_WAVE, f2, 0.1, 0)
        src  = gr.add_ff()
        thr = gr.throttle(gr.sizeof_float, 100*npts)
        noise = gr.noise_source_f(gr.GR_GAUSSIAN, 0.001)
        add = gr.add_ff()
        self.snk1 = qtgui.time_sink_f(npts, Rs,
                                      "Complex Time Example", 3)

        self.connect(src1, (src,0))
        self.connect(src2, (src,1))
        self.connect(src, thr, (add,0))
        self.connect(noise, (add,1))
        self.connect(add, self.snk1)
        self.connect(src1, (self.snk1, 1))
        self.connect(src2, (self.snk1, 2))

        self.ctrl_win = control_box()
        self.ctrl_win.attach_signal1(src1)
        self.ctrl_win.attach_signal2(src2)

        # Get the reference pointer to the SpectrumDisplayForm QWidget
        pyQt  = self.snk1.pyqwidget()

        # Wrap the pointer as a PyQt SIP object
        # This can now be manipulated as a PyQt4.QtGui.QWidget
        pyWin = sip.wrapinstance(pyQt, QtGui.QWidget)

        # Example of using signal/slot to set the title of a curve
        pyWin.connect(pyWin, QtCore.SIGNAL("setTitle(int, QString)"),
                      pyWin, QtCore.SLOT("setTitle(int, QString)"))
        pyWin.emit(QtCore.SIGNAL("setTitle(int, QString)"), 0, "sum")
        self.snk1.set_title(1, "src1")
        self.snk1.set_title(2, "src2")

        # Can also set the color of a curve
        #self.snk1.set_color(5, "blue")

        #pyWin.show()
        self.main_box = dialog_box(pyWin, self.ctrl_win)
        self.main_box.show()
Пример #11
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, N0, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1,
                                gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics_in = trellis.metrics_f(
        fi.O(), dimensionality, constellation, digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for innner Viterbi
    gnd = gr.vector_source_f([0], True)
    siso_in = trellis.siso_f(
        fi, K, 0, -1, True, False, trellis.TRELLIS_MIN_SUM
    )  # Put -1 if the Initial/Final states are not set.
    deinter = trellis.permutation(interleaver.K(), interleaver.DEINTER(),
                                  fi.I(), gr.sizeof_float)
    va_out = trellis.viterbi_s(
        fo, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics_in)
    tb.connect(gnd, (siso_in, 0))
    tb.connect(metrics_in, (siso_in, 1))
    tb.connect(siso_in, deinter, va_out, fsmi2s, dst)

    tb.run()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Пример #12
0
    def __init__(self, alpha=0.1, noise_mag=0):
        """
            Parameters:

                alpha: float
                noise_mag: float
        """
        gr.hier_block2.__init__(
            self, "Phase Noise Generator",
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
            gr.io_signature(1, 1, gr.sizeof_gr_complex),
        )

        ##################################################
        # Parameters
        ##################################################
        self.alpha = alpha
        self.noise_mag = noise_mag

        ##################################################
        # Blocks
        ##################################################
        self.gr_transcendental_0_0 = gr.transcendental("sin", "float")
        self.gr_transcendental_0 = gr.transcendental("cos", "float")
        self.gr_single_pole_iir_filter_xx_0 = gr.single_pole_iir_filter_ff(
            alpha, 1)
        self.gr_noise_source_x_0 = gr.noise_source_f(gr.GR_GAUSSIAN, noise_mag,
                                                     42)
        self.gr_multiply_xx_0 = gr.multiply_vcc(1)
        self.gr_float_to_complex_0 = gr.float_to_complex(1)

        ##################################################
        # Connections
        ##################################################
        self.connect((self.gr_float_to_complex_0, 0),
                     (self.gr_multiply_xx_0, 1))
        self.connect((self.gr_noise_source_x_0, 0),
                     (self.gr_single_pole_iir_filter_xx_0, 0))
        self.connect((self.gr_multiply_xx_0, 0), (self, 0))
        self.connect((self, 0), (self.gr_multiply_xx_0, 0))
        self.connect((self.gr_single_pole_iir_filter_xx_0, 0),
                     (self.gr_transcendental_0, 0))
        self.connect((self.gr_single_pole_iir_filter_xx_0, 0),
                     (self.gr_transcendental_0_0, 0))
        self.connect((self.gr_transcendental_0, 0),
                     (self.gr_float_to_complex_0, 0))
        self.connect((self.gr_transcendental_0_0, 0),
                     (self.gr_float_to_complex_0, 1))
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed,P):
    fg = gr.flow_graph ()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16*P) # packet size in shorts
    s2fsmi=gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    s2p = gr.stream_to_streams(gr.sizeof_short,P) # serial to parallel
    enc = trellis.encoder_ss(f,0) # initiali state = 0
    mod = gr.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add=[]
    noise=[]
    for i in range(P):
        add.append(gr.add_ff())
        noise.append(gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed))

    # RX
    metrics = trellis.metrics_f(f.O(),dimensionality,constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    va = trellis.viterbi_s(f,K,0,-1) # Put -1 if the Initial/Final states are not set.
    p2s = gr.streams_to_stream(gr.sizeof_short,P) # parallel to serial
    fsmi2s=gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    fg.connect (src,src_head,s2fsmi,s2p)
    for i in range(P):
        fg.connect ((s2p,i),(enc,i),(mod,i))
        fg.connect ((mod,i),(add[i],0))
        fg.connect (noise[i],(add[i],1))
        fg.connect (add[i],(metrics,i))
        fg.connect ((metrics,i),(va,i),(p2s,i))
    fg.connect (p2s,fsmi2s,dst)
    

    fg.run()
    
    # A bit of cheating: run the program once and print the 
    # final encoder state.
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    
    return (ntotal,ntotal-nright)
Пример #14
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    #src = gr.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False)
    enc = trellis.pccc_encoder_ss(fo, 0, fi, 0, interleaver, K)
    code = gr.vector_sink_s()
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics_in = trellis.metrics_f(
        fi.O() * fo.O(), dimensionality, constellation,
        digital.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for innner SISO
    scale = gr.multiply_const_ff(1.0 / N0)
    dec = trellis.pccc_decoder_s(fo, 0, -1, fi, 0, -1, interleaver, K, IT,
                                 trellis.TRELLIS_MIN_SUM)

    fsmi2s = gr.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc, mod)
    #tb.connect (src,enc,mod)
    #tb.connect(enc,code)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics_in, scale, dec, fsmi2s, dst)

    tb.run()

    #print code.data()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
def run_test (f,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,N0,seed):
    fg = gr.flow_graph ()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0]*(K+2*L)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
    for i in range(L): # first/last L symbols set to 0
        packet[i] = 0
        packet[len(packet)-i-1] = 0
    src = gr.vector_source_s(packet,False)
    mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0])

    # CHANNEL
    isi = gr.fir_filter_fff(1,channel)
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
    
    # RX
    skip = gr.skiphead(gr.sizeof_float, L) # skip the first L samples since you know they are coming from the L zero symbols
    #metrics = trellis.metrics_f(f.O(),dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for Viterbi
    #va = trellis.viterbi_s(f,K+L,-1,0) # Put -1 if the Initial/Final states are not set.
    va = trellis.viterbi_combined_fs(f,K+L,0,0,dimensionality,tot_constellation,trellis.TRELLIS_EUCLIDEAN) # using viterbi_combined_fs instead of metrics_f/viterbi_s allows larger packet lengths because metrics_f is complaining for not being able to allocate large buffers. This is due to the large f.O() in this application...
    dst = gr.vector_sink_s()

    fg.connect (src,mod)
    fg.connect (mod,isi,(add,0))
    fg.connect (noise,(add,1))
    #fg.connect (add,metrics)
    #fg.connect (metrics,va,dst)
    fg.connect (add,skip,va,dst)

    fg.run()

    data = dst.data() 
    ntotal = len(data) - L
    nright=0
    for i in range(ntotal):
        if packet[i+L]==data[i]:
            nright=nright+1
        #else:
            #print "Error in ", i
    
    return (ntotal,ntotal-nright)
Пример #16
0
  def __init__(self):
    gr.top_block.__init__(self)

    self.sample_rate = 10e3

    s0 = gr.noise_source_f (gr.GR_UNIFORM, MAX)
    s1 = foo.ct_source_f (100000)
        
    u = foo.peak_fv (MAX, 80, "an identifier") 
    self.connect(s0, (u,0))
    self.connect(s1, (u,1))

    v = foo.wait_vv ()
    self.connect(u, v)

    t = gr.null_sink (4 * 1024)
    self.connect(v, t)
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, channel, modulation,
             dimensionality, tot_constellation, Es, N0, IT, seed):
    tb = gr.top_block()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0] * (K)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1)  # random symbols
    src = gr.vector_source_s(packet, False)
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1,
                                gr.sizeof_short)
    mod = gr.chunks_to_symbols_sf(modulation[1], modulation[0])

    # CHANNEL
    isi = gr.fir_filter_fff(1, channel)
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    (head, tail) = make_rx(tb, fo, fi, dimensionality, tot_constellation, K,
                           interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM)
    dst = gr.vector_sink_s()

    tb.connect(src, enc_out, inter, mod)
    tb.connect(mod, isi, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, head)
    tb.connect(tail, dst)

    tb.run()

    data = dst.data()
    ntotal = len(data)
    nright = 0
    for i in range(ntotal):
        if packet[i] == data[i]:
            nright = nright + 1
        #else:
        #print "Error in ", i

    return (ntotal, ntotal - nright)
Пример #18
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    metrics_in = trellis.metrics_f(
        fi.O(), dimensionality, constellation, trellis.TRELLIS_EUCLIDEAN
    )  # data preprocessing to generate metrics for innner Viterbi
    va_in = trellis.viterbi_s(fi, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    deinter = trellis.permutation(interleaver.K(), interleaver.DEINTER(), 1, gr.sizeof_short)
    metrics_out = trellis.metrics_s(
        fo.O(), 1, [0, 1, 2, 3], trellis.TRELLIS_HARD_SYMBOL
    )  # data preprocessing to generate metrics for outer Viterbi (hard decisions)
    va_out = trellis.viterbi_s(fo, K, 0, -1)  # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, metrics_in)
    tb.connect(metrics_in, va_in, deinter, metrics_out, va_out, fsmi2s, dst)

    tb.run()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Пример #19
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1,
                                gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    (head, tail) = make_rx(tb, fo, fi, dimensionality, constellation, K,
                           interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM)
    #(head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_SUM_PRODUCT)
    fsmi2s = gr.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, head)
    tb.connect(tail, fsmi2s, dst)

    tb.run()

    #print enc_out.ST(), enc_in.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Пример #20
0
    def __init__(self):
        gr.top_block.__init__(self)

        Rs = 8000
        f1 = 1000
        f2 = 2000

        fftsize = 2048

        self.qapp = QtGui.QApplication(sys.argv)
        
        src1 = gr.sig_source_f(Rs, gr.GR_SIN_WAVE, f1, 0.1, 0)
        src2 = gr.sig_source_f(Rs, gr.GR_SIN_WAVE, f2, 0.1, 0)
        src  = gr.add_ff()
        thr = gr.throttle(gr.sizeof_float, 100*fftsize)
        noise = gr.noise_source_f(gr.GR_GAUSSIAN, 0.001)
        add = gr.add_ff()
        self.snk1 = qtgui.sink_f(fftsize, gr.firdes.WIN_BLACKMAN_hARRIS,
                                 0, Rs,
                                 "Float Signal Example",
                                 True, True, True, False)

        self.connect(src1, (src,0))
        self.connect(src2, (src,1))
        self.connect(src, thr, (add,0))
        self.connect(noise, (add,1))
        self.connect(add, self.snk1)

        self.ctrl_win = control_box()
        self.ctrl_win.attach_signal1(src1)
        self.ctrl_win.attach_signal2(src2)

        # Get the reference pointer to the SpectrumDisplayForm QWidget
        pyQt  = self.snk1.pyqwidget()

        # Wrap the pointer as a PyQt SIP object
        # This can now be manipulated as a PyQt4.QtGui.QWidget
        pyWin = sip.wrapinstance(pyQt, QtGui.QWidget)

        self.main_box = dialog_box(pyWin, self.ctrl_win)

        self.main_box.show()
Пример #21
0
    def __init__(self):
        gr.top_block.__init__(self)

        Rs = 8000
        f1 = 1000
        f2 = 2000

        fftsize = 2048

        self.qapp = QtGui.QApplication(sys.argv)
        
        src1 = gr.sig_source_f(Rs, gr.GR_SIN_WAVE, f1, 0.1, 0)
        src2 = gr.sig_source_f(Rs, gr.GR_SIN_WAVE, f2, 0.1, 0)
        src  = gr.add_ff()
        thr = gr.throttle(gr.sizeof_float, 100*fftsize)
        noise = gr.noise_source_f(gr.GR_GAUSSIAN, 0.001)
        add = gr.add_ff()
        self.snk1 = qtgui.sink_f(fftsize, gr.firdes.WIN_BLACKMAN_hARRIS,
                                 0, Rs,
                                 "Float Signal Example",
                                 True, True, True, False)

        self.connect(src1, (src,0))
        self.connect(src2, (src,1))
        self.connect(src, thr, (add,0))
        self.connect(noise, (add,1))
        self.connect(add, self.snk1)

        self.ctrl_win = control_box()
        self.ctrl_win.attach_signal1(src1)
        self.ctrl_win.attach_signal2(src2)

        # Get the reference pointer to the SpectrumDisplayForm QWidget
        pyQt  = self.snk1.pyqwidget()

        # Wrap the pointer as a PyQt SIP object
        # This can now be manipulated as a PyQt4.QtGui.QWidget
        pyWin = sip.wrapinstance(pyQt, QtGui.QWidget)

        self.main_box = dialog_box(pyWin, self.ctrl_win)

        self.main_box.show()
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,channel,modulation,dimensionality,tot_constellation,Es,N0,IT,seed):
    tb = gr.top_block ()
    L = len(channel)

    # TX
    # this for loop is TOO slow in python!!!
    packet = [0]*(K)
    random.seed(seed)
    for i in range(len(packet)):
        packet[i] = random.randint(0, 2**bitspersymbol - 1) # random symbols
    src = gr.vector_source_s(packet,False)
    enc_out = trellis.encoder_ss(fo,0) # initial state = 0
    inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
    mod = gr.chunks_to_symbols_sf(modulation[1],modulation[0])

    # CHANNEL
    isi = gr.fir_filter_fff(1,channel)
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
    
    # RX
    (head,tail) = make_rx(tb,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM) 
    dst = gr.vector_sink_s(); 
    
    tb.connect (src,enc_out,inter,mod)
    tb.connect (mod,isi,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,head)
    tb.connect (tail,dst)
    
    tb.run()

    data = dst.data()
    ntotal = len(data)
    nright=0
    for i in range(ntotal):
        if packet[i]==data[i]:
            nright=nright+1
        #else:
            #print "Error in ", i
 
    return (ntotal,ntotal-nright)
Пример #23
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality,
             constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc = trellis.sccc_encoder_ss(fo, 0, fi, 0, interleaver, K)
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    dec = trellis.sccc_decoder_combined_fs(fo, 0, -1, fi, 0, -1, interleaver,
                                           K, IT, trellis.TRELLIS_MIN_SUM,
                                           dimensionality, constellation,
                                           digital.TRELLIS_EUCLIDEAN, 1.0)
    fsmi2s = gr.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    #tb.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
    tb.connect(src, src_head, s2fsmi, enc, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    #tb.connect (add,head)
    #tb.connect (tail,fsmi2s,dst)
    tb.connect(add, dec, fsmi2s, dst)

    tb.run()

    #print enc_out.ST(), enc_in.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Пример #24
0
def run_test(f, Kb, bitspersymbol, K, dimensionality, constellation, N0, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f, 0)  # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    va = trellis.viterbi_combined_fs(
        f, K, 0, -1, dimensionality, constellation, trellis.TRELLIS_EUCLIDEAN
    )  # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(
        bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, va, fsmi2s, dst)

    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()

    return (ntotal, ntotal - nright)
Пример #25
0
def run_test(fo, fi, interleaver, Kb, bitspersymbol, K, dimensionality, constellation, Es, N0, IT, seed):
    tb = gr.top_block()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head(gr.sizeof_short, Kb / 16)  # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(
        bitspersymbol, gr.GR_MSB_FIRST
    )  # unpack shorts to symbols compatible with the outer FSM input cardinality
    enc_out = trellis.encoder_ss(fo, 0)  # initial state = 0
    inter = trellis.permutation(interleaver.K(), interleaver.INTER(), 1, gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi, 0)  # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation, dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN, math.sqrt(N0 / 2), seed)

    # RX
    (head, tail) = make_rx(
        tb, fo, fi, dimensionality, constellation, K, interleaver, IT, Es, N0, trellis.TRELLIS_MIN_SUM
    )
    # (head,tail) = make_rx(tb,fo,fi,dimensionality,constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_SUM_PRODUCT)
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol, gr.GR_MSB_FIRST)  # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()

    tb.connect(src, src_head, s2fsmi, enc_out, inter, enc_in, mod)
    tb.connect(mod, (add, 0))
    tb.connect(noise, (add, 1))
    tb.connect(add, head)
    tb.connect(tail, fsmi2s, dst)

    tb.run()

    # print enc_out.ST(), enc_in.ST()

    ntotal = dst.ntotal()
    nright = dst.nright()
    runlength = dst.runlength()
    return (ntotal, ntotal - nright)
Пример #26
0
def run_test (f,Kb,bitspersymbol,K,dimensionality,constellation,N0,seed):
    tb = gr.top_block ()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the FSM input cardinality
    enc = trellis.encoder_ss(f,0) # initial state = 0
    mod = gr.chunks_to_symbols_sf(constellation,dimensionality)


    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)


    # RX
    va = trellis.viterbi_combined_fs(f,K,0,-1,dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # Put -1 if the Initial/Final states are not set.
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s();


    tb.connect (src,src_head,s2fsmi,enc,mod)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,va,fsmi2s,dst)


    tb.run()

    # A bit of cheating: run the program once and print the
    # final encoder state..
    # Then put it as the last argument in the viterbi block
    #print "final state = " , enc.ST()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()

    return (ntotal,ntotal-nright)
Пример #27
0
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,constellation,Es,N0,IT,seed):
    tb = gr.top_block ()


    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the outer FSM input cardinality
    #src = gr.vector_source_s([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],False)
    enc = trellis.pccc_encoder_ss(fo,0,fi,0,interleaver,K)
    code = gr.vector_sink_s()
    mod = gr.chunks_to_symbols_sf(constellation,dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)

    # RX
    metrics_in = trellis.metrics_f(fi.O()*fo.O(),dimensionality,constellation,digital.TRELLIS_EUCLIDEAN) # data preprocessing to generate metrics for innner SISO
    scale = gr.multiply_const_ff(1.0/N0)
    dec = trellis.pccc_decoder_s(fo,0,-1,fi,0,-1,interleaver,K,IT,trellis.TRELLIS_MIN_SUM)
 
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s()
    
    tb.connect (src,src_head,s2fsmi,enc,mod)
    #tb.connect (src,enc,mod)
    #tb.connect(enc,code)
    tb.connect (mod,(add,0))
    tb.connect (noise,(add,1))
    tb.connect (add,metrics_in,scale,dec,fsmi2s,dst)

    tb.run()
 
    #print code.data()
    
    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    return (ntotal,ntotal-nright)
Пример #28
0
    def __init__(self, N, fs, bw, tw, atten, D):
        gr.top_block.__init__(self)

        self._nsamps = N
        self._fs = fs
        self._bw = bw
        self._tw = tw
        self._at = atten
        self._decim = D
        taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at)
        print "Num. Taps: ", len(taps)

        self.src = gr.noise_source_f(gr.GR_GAUSSIAN, 1)
        self.head = gr.head(gr.sizeof_float, self._nsamps)

        self.filt0 = filter.fir_filter_fff(self._decim, taps)

        self.vsnk_src = gr.vector_sink_f()
        self.vsnk_out = gr.vector_sink_f()

        self.connect(self.src, self.head, self.vsnk_src)
        self.connect(self.head, self.filt0, self.vsnk_out)
Пример #29
0
    def __init__(self, N, fs, bw, tw, atten, D):
        gr.top_block.__init__(self)

        self._nsamps = N
        self._fs = fs
        self._bw = bw
        self._tw = tw
        self._at = atten
        self._decim = D
        taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw,
                                        self._at)
        print "Num. Taps: ", len(taps)

        self.src = gr.noise_source_f(gr.GR_GAUSSIAN, 1)
        self.head = gr.head(gr.sizeof_float, self._nsamps)

        self.filt0 = filter.fir_filter_fff(self._decim, taps)

        self.vsnk_src = gr.vector_sink_f()
        self.vsnk_out = gr.vector_sink_f()

        self.connect(self.src, self.head, self.vsnk_src)
        self.connect(self.head, self.filt0, self.vsnk_out)
def run_test (fo,fi,interleaver,Kb,bitspersymbol,K,dimensionality,tot_constellation,Es,N0,IT,seed):
    fg = gr.flow_graph ()

    # TX
    src = gr.lfsr_32k_source_s()
    src_head = gr.head (gr.sizeof_short,Kb/16) # packet size in shorts
    s2fsmi = gr.packed_to_unpacked_ss(bitspersymbol,gr.GR_MSB_FIRST) # unpack shorts to symbols compatible with the iouter FSM input cardinality
    enc_out = trellis.encoder_ss(fo,0) # initial state = 0
    inter = trellis.permutation(interleaver.K(),interleaver.INTER(),1,gr.sizeof_short)
    enc_in = trellis.encoder_ss(fi,0) # initial state = 0
    # essentially here we implement the combination of modulation and channel as a memoryless modulation (the memory induced by the channel is hidden in the innner FSM)
    mod = gr.chunks_to_symbols_sf(tot_constellation,dimensionality)

    # CHANNEL
    add = gr.add_ff()
    noise = gr.noise_source_f(gr.GR_GAUSSIAN,math.sqrt(N0/2),seed)
    
    # RX
    (head,tail) = make_rx(fg,fo,fi,dimensionality,tot_constellation,K,interleaver,IT,Es,N0,trellis.TRELLIS_MIN_SUM) 
    fsmi2s = gr.unpacked_to_packed_ss(bitspersymbol,gr.GR_MSB_FIRST) # pack FSM input symbols to shorts
    dst = gr.check_lfsr_32k_s(); 
    
    fg.connect (src,src_head,s2fsmi,enc_out,inter,enc_in,mod)
    fg.connect (mod,(add,0))
    fg.connect (noise,(add,1))
    fg.connect (add,head)
    fg.connect (tail,fsmi2s,dst)
    
    fg.run()

    ntotal = dst.ntotal ()
    nright = dst.nright ()
    runlength = dst.runlength ()
    #print ntotal,nright,runlength 
    
    return (ntotal,ntotal-nright)
Пример #31
0
    def __init__(self):
        gr.top_block.__init__(self, "Top Block")
        Qt.QWidget.__init__(self)
        self.setWindowTitle("Top Block")
        self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
        self.top_scroll_layout = Qt.QVBoxLayout()
        self.setLayout(self.top_scroll_layout)
        self.top_scroll = Qt.QScrollArea()
        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
        self.top_scroll_layout.addWidget(self.top_scroll)
        self.top_scroll.setWidgetResizable(True)
        self.top_widget = Qt.QWidget()
        self.top_scroll.setWidget(self.top_widget)
        self.top_layout = Qt.QVBoxLayout(self.top_widget)
        self.top_grid_layout = Qt.QGridLayout()
        self.top_layout.addLayout(self.top_grid_layout)

        ##################################################
        # Variables
        ##################################################
        self.snr_db = snr_db = 3
        self.noiseAmplitude = noiseAmplitude = sqrt(1 / (10**(0.1 * snr_db)))
        self.constellation = constellation = [-1.3416, -0.4472, 0.4472, 1.3416]
        self.bits = bits = 2

        ##################################################
        # Blocks
        ##################################################
        self.random_source_x_0 = gr.vector_source_b(
            map(int, numpy.random.randint(0, 4, 10000)), True)
        self.qtgui_sink_x_0_0_1 = qtgui.sink_c(
            1024,  #fftsize
            firdes.WIN_BLACKMAN_hARRIS,  #wintype
            0,  #fc
            400,  #bw
            "QT GUI Plot",  #name
            False,  #plotfreq
            False,  #plotwaterfall
            False,  #plottime
            True,  #plotconst
        )
        self.qtgui_sink_x_0_0_1.set_update_time(1.0 / 100)
        self._qtgui_sink_x_0_0_1_win = sip.wrapinstance(
            self.qtgui_sink_x_0_0_1.pyqwidget(), Qt.QWidget)
        self.top_layout.addWidget(self._qtgui_sink_x_0_0_1_win)
        self.gr_tag_debug_0 = gr.tag_debug(gr.sizeof_float * 1, "")
        self.gr_noise_source_x_0 = gr.noise_source_f(gr.GR_GAUSSIAN,
                                                     noiseAmplitude, 0)
        self.gr_file_sink_1 = gr.file_sink(gr.sizeof_gr_complex * 1,
                                           "symbols.bin")
        self.gr_file_sink_1.set_unbuffered(False)
        self.gr_file_sink_0_0 = gr.file_sink(gr.sizeof_char * 1, "output.bin")
        self.gr_file_sink_0_0.set_unbuffered(False)
        self.gr_file_sink_0 = gr.file_sink(gr.sizeof_char * 1, "input.bin")
        self.gr_file_sink_0.set_unbuffered(False)
        self.digital_constellation_decoder_cb_0 = digital.constellation_decoder_cb(
            digital.constellation_calcdist([-3, -1, 1, 3], [], 1, 1).base())
        self.digital_chunks_to_symbols_xx_0 = digital.chunks_to_symbols_bf(
            (constellation), 1)
        self.const_source_x_0 = gr.sig_source_f(0, gr.GR_CONST_WAVE, 0, 0, 0)
        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float * 1, 100)
        self.blocks_float_to_complex_0 = blocks.float_to_complex(1)
        self.blocks_add_xx_0 = blocks.add_vff(1)
        self.blks2_error_rate_0 = grc_blks2.error_rate(
            type='BER',
            win_size=10000,
            bits_per_symbol=bits,
        )

        ##################################################
        # Connections
        ##################################################
        self.connect((self.random_source_x_0, 0), (self.blks2_error_rate_0, 0))
        self.connect((self.random_source_x_0, 0),
                     (self.digital_chunks_to_symbols_xx_0, 0))
        self.connect((self.gr_noise_source_x_0, 0), (self.blocks_add_xx_0, 1))
        self.connect((self.digital_constellation_decoder_cb_0, 0),
                     (self.blks2_error_rate_0, 1))
        self.connect((self.random_source_x_0, 0), (self.gr_file_sink_0, 0))
        self.connect((self.digital_constellation_decoder_cb_0, 0),
                     (self.gr_file_sink_0_0, 0))
        self.connect((self.blocks_throttle_0, 0),
                     (self.blocks_float_to_complex_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.digital_constellation_decoder_cb_0, 0))
        self.connect((self.const_source_x_0, 0),
                     (self.blocks_float_to_complex_0, 1))
        self.connect((self.blocks_add_xx_0, 0), (self.blocks_throttle_0, 0))
        self.connect((self.digital_chunks_to_symbols_xx_0, 0),
                     (self.blocks_add_xx_0, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.qtgui_sink_x_0_0_1, 0))
        self.connect((self.blocks_float_to_complex_0, 0),
                     (self.gr_file_sink_1, 0))
        self.connect((self.blks2_error_rate_0, 0), (self.gr_tag_debug_0, 0))
Пример #32
0
 def test_001(self):
     # Just confirm that we can instantiate a noise source
     op = gr.noise_source_f(gr.GR_GAUSSIAN, 10, 10)
Пример #33
0
 def test_001(self):
     # Just confirm that we can instantiate a noise source
     op = gr.noise_source_f(gr.GR_GAUSSIAN, 10, 10)
Пример #34
0
def make_noise_gronly():
    global tb
    n = gr.noise_source_f(gr.GR_UNIFORM,1)
    ftob = gr.binary_slicer_fb()
    tb.connect(n,ftob)
    return ftob
Пример #35
0
def make_noise_gronly():
    global tb
    n = gr.noise_source_f(gr.GR_UNIFORM, 1)
    ftob = gr.binary_slicer_fb()
    tb.connect(n, ftob)
    return ftob
    def __init__(self, frame, panel, vbox, argv, panel_info):
        stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)

        signal_type = default_signal_type # not yet an option

        # command line options
        parser = OptionParser(option_class=eng_option)
        parser.add_option("-r", "--sample-rate",type="eng_float",
                          default=default_rate,
                          help="set flow graph sample rate [default=%s]" % default_rate)
        parser.add_option ("-f", "--freq", type="eng_float",
                           default=default_freq,
                           help="set signal frequency [default=%s]" % default_freq)
        parser.add_option ("-a", "--amplitude", type="eng_float",
                           default=default_ampl,
                           help="set signal amplitude [default %s]" % default_ampl)
        parser.add_option ("--gaussian", dest="noise_type",
                           action="store_const", const=gr.GR_GAUSSIAN,
                           help="generate Gaussian noise (-x is variance)",
                           default=default_noise_type)
        parser.add_option ("--uniform", dest="noise_type",
                           action="store_const", const=gr.GR_UNIFORM,
                           help="generate Uniform noise (-x is peak-to-peak)")
        parser.add_option ("-x", "--noise_amplitude", type="eng_float",
                           default=default_noise_ampl,
                           help="set noise amplitude (variance or p-p) [default %s]" % default_noise_ampl)
        parser.add_option("-n", "--frame_decim", type="int",
                          default=default_frame_decim,
                          help="set oscope frame decimation factor to DECIM [default=%s]" % default_frame_decim)
        parser.add_option("-v", "--v_scale", type="eng_float",
                          default=default_v_scale,
                          help="set oscope initial V/div [default=%s]" % default_v_scale)
        parser.add_option("-t", "--t_scale", type="eng_float",
                          default=default_t_scale,
                          help="set oscope initial s/div [default=%s]" % default_t_scale)
        parser.add_option("-l", "--ref_level", type="eng_float",
                          default=default_ref_level,
                          help="set fft reference level [default=%sdB]" % default_ref_level)
        (options, args) = parser.parse_args ()
        if len(args) != 0:
            parser.print_help()
            raise SystemExit, 1

        # flow graph, including scope and fft frames
        sample_rate = int(options.sample_rate)

        # signal, noise sources need to be attributes so callbacks can get them
        self.signal = gr.sig_source_f(sample_rate, gr.GR_SIN_WAVE, options.freq,
                                    options.amplitude, 0.0)

        # Seed copied from example at cswiger/noise_source.html
        self.noise = gr.noise_source_f(options.noise_type,
                                       options.noise_amplitude,
                                       2482)
        add = gr.add_ff()
        
        throttle = gr.throttle(gr.sizeof_float, sample_rate)

        (scope_title, scope_panel, scope_vbox) = panel_info[1] #0 is ctrl panel
        scope = scopesink2.scope_sink_f(scope_panel,
                                       sample_rate=sample_rate,
                                       frame_decim=options.frame_decim,
                                       v_scale=options.v_scale,
                                       t_scale=options.t_scale)
        scope_vbox.Add (scope.win, 1, wx.EXPAND)

        fft_size = 256
        (fft_title, fft_panel, fft_vbox) = panel_info[2] # 0 is control panel
        fft = fftsink2.fft_sink_f (fft_panel,title=fft_title,
                                  fft_size=fft_size*2,
                                  sample_rate=sample_rate, baseband_freq=0,
                                  ref_level=options.ref_level,
                                  y_per_div=10)
        fft_vbox.Add (fft.win, 1, wx.EXPAND)

        self.connect (self.signal, (add,0))
        self.connect (self.noise, (add,1))
        self.connect (add, throttle)
        # self.connect (throttle, (scope, 0))
        # self.connect (throttle, (scope, 1)) # can't leave scope in unconnected
        self.connect (throttle, scope)
        self.connect (throttle, fft)

        # control panel frame
        sliders = form.form()
        
        vbox.Add((0,10), 0)
        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add((10,0), 0)
        sliders['signal_type'] = form.static_text_field(parent=panel,sizer=hbox)
        vbox.Add(hbox, 0, wx.EXPAND)
        
        vbox.Add((0,10), 0)
        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add((10,0), 0)
        sliders['signal_freq'] = form.slider_field(parent=panel, sizer=hbox,
                                                 label="Frequency",
                                                 weight=3,
                                                 min=0, max=2*options.freq,
                                                 callback=self.set_signal_freq)
        vbox.Add(hbox, 0, wx.EXPAND)
        
        vbox.Add((0,10), 0)
        hbox = wx.BoxSizer(wx.HORIZONTAL) # apparently you can rebind hbox
        hbox.Add((10,0), 0)
        sliders['signal_ampl'] = form.slider_field(parent=panel, sizer=hbox,
                                                 label="Amplitude",
                                                 weight=3,
                                                 min=0, max=usrp_full_scale,
                                                 callback=self.set_signal_ampl)
        vbox.Add(hbox, 0, wx.EXPAND)

        vbox.Add((0,20), 0)
        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add((10,0), 0)
        sliders['noise_type'] = form.static_text_field(parent=panel,sizer=hbox)
        vbox.Add(hbox, 0, wx.EXPAND)

        vbox.Add((0,10), 0)
        hbox = wx.BoxSizer(wx.HORIZONTAL)
        hbox.Add((10,0), 0)
        sliders['noise_ampl'] = form.slider_field(parent=panel, sizer=hbox,
                                                  label="Amplitude",
                                                  weight=3,
                                                  min=0, max=usrp_full_scale,
                                                  callback=self.set_noise_ampl)
        vbox.Add(hbox, 0, wx.EXPAND)
        vbox.Add((0,10), 0)
        
        sliders['signal_type'].set_value("Signal: %s"
                                        % signal_string[signal_type])    
        sliders['noise_type'].set_value("Noise: %s"
                                        % noise_string[options.noise_type])
        sliders['signal_freq'].set_value(options.freq)
        sliders['signal_ampl'].set_value(options.amplitude)        
        sliders['noise_ampl'].set_value(options.noise_amplitude)