Пример #1
0
    def __init__(self, nfft, win_step):
        def tfc(x):
            return np.dstack([spectrogram(x[:, ci], nfft, win_step) for ci in range(x.shape[1])])

        BaseNode.__init__(self)
        self.nfft, self.win_step = nfft, win_step
        self.n = FeatMap(tfc)
Пример #2
0
 def __init__(self, filt_design_func):
     """
 Forward-backward filtering node. filt_design_func is a function that takes
 the sample rate as an argument, and returns the filter coefficients (b, a).
 """
     BaseNode.__init__(self)
     self.filt_design_func = filt_design_func
Пример #3
0
 def __init__(self, isi=10, reest=.5):
   '''
   Define a SlowSphering node, with inter-stimulus interval isi in seconds
   which is reestimated every reest seconds.
   '''
   self.isi = isi
   self.reest = reest
   BaseNode.__init__(self)
Пример #4
0
 def __init__(self, cutoff=[0.05, 0.95]):
     self.cutoff = np.atleast_1d(cutoff)
     assert self.cutoff.size == 2
     BaseNode.__init__(self)
Пример #5
0
 def __init__(self, mark_to_cl, offsets):
   '''
   In contrast to psychic.utils.slice, offsets are specified in *seconds*
   '''
   self.mdict, self.offsets = mark_to_cl, np.asarray(offsets)
   BaseNode.__init__(self)
Пример #6
0
 def __init__(self, factor, max_marker_delay=0):
   self.factor = factor
   self.max_marker_delay = max_marker_delay
   BaseNode.__init__(self)
Пример #7
0
 def __init__(self, win_size, win_step, ref_point=0.5):
     BaseNode.__init__(self)
     self.win_size = win_size
     self.win_step = win_step
     self.ref_frame = int(float(ref_point) * (self.win_size - 1))
Пример #8
0
 def __init__(self, ftype):
     BaseNode.__init__(self)
     self.W = None
     self.ftype = ftype