Пример #1
0
def insertCSV(stock):

    client = bigquery.Client(project_id)

    SCHEMA = [
        SchemaField('symbol', 'STRING', mode='required'),
        SchemaField('date', 'DATE', mode='required'),
        SchemaField('close', 'FLOAT', mode='required'),
        SchemaField('high', 'FLOAT', mode='required'),
        SchemaField('low', 'FLOAT', mode='required'),
        SchemaField('open', 'FLOAT', mode='required'),
        SchemaField('volume', 'INTEGER', mode='required'),
    ]

    table_ref = client.dataset(dataset_id).table(stock)

    load_config = LoadJobConfig()
    load_config.skip_leading_rows = 1
    load_config.schema = SCHEMA

    with open('Data/%s.csv' % stock, 'rb') as readable:
        r = csv.reader(readable, delimiter=',')
        client.load_table_from_file(readable,
                                    table_ref,
                                    job_config=load_config)
Пример #2
0
    def process_response_rows_for_bigquery(self, rows: list,
                                           table_reference: TableReference):
        rows_dataframe = DataFrame.from_records(rows)

        rows_dataframe = concat(
            [rows_dataframe, rows_dataframe['dimensions'].apply(Series)],
            axis=1,
            join='inner')
        rows_dataframe = rows_dataframe.drop(['dimensions'], axis=1)
        rows_dataframe['date'] = rows_dataframe['date'].apply(
            lambda x: x.date())

        job_config = LoadJobConfig()
        job_config.write_disposition = WriteDisposition.WRITE_APPEND
        job_config.time_partitioning = TimePartitioning(
            type_=TimePartitioningType.DAY, field='date')
        job_config.schema = [
            self._get_schema_for_field(column)
            for column in list(rows_dataframe.columns.values)
        ]

        try:
            load_job = self.bigquery.client.load_table_from_dataframe(
                rows_dataframe, table_reference, job_config=job_config)

            load_job.result()
        except BadRequest as error:
            print(error.errors)
Пример #3
0
def upload_tweets():
    big_query_client = bigquery.Client.from_service_account_json('my-beam-project-b2834963a4ae.json')

    dataset_ref = big_query_client.dataset('Tweets')
    dataset = Dataset(dataset_ref)
    dataset.description = 'This represents tweets of trending topics'
    dataset = big_query_client.create_dataset(dataset)

    SCHEMA = [
        SchemaField('Tweets', 'STRING', mode='Nullable'),

    ]
    table_ref = big_query_client.dataset('Tweets').table('tabletweet')

    load_config = LoadJobConfig()
    load_config.skip_leading_rows = 0
    load_config.schema = SCHEMA
    load_config.allow_quoted_newlines = True
    load_config.ignore_unknown_values = False
    load_config.max_bad_records = 200


    with open('tweets.csv', 'rb') as readable:
        big_query_client.load_table_from_file(
            readable, table_ref, job_config=load_config)
    print('tweets file uploaded to big query')
Пример #4
0
        def load_task():
            client = Client()
            job_config = LoadJobConfig()
            schema_path = os.path.join(
                dags_folder,
                'resources/stages/raw/schemas/{task}.json'.format(task=task))
            job_config.schema = read_bigquery_schema_from_file(schema_path)
            job_config.source_format = SourceFormat.CSV if file_format == 'csv' else SourceFormat.NEWLINE_DELIMITED_JSON
            if file_format == 'csv':
                job_config.skip_leading_rows = 1
            job_config.write_disposition = 'WRITE_TRUNCATE'
            job_config.allow_quoted_newlines = allow_quoted_newlines
            job_config.ignore_unknown_values = True

            export_location_uri = 'gs://{bucket}/export'.format(
                bucket=output_bucket)
            uri = '{export_location_uri}/{task}/*.{file_format}'.format(
                export_location_uri=export_location_uri,
                task=task,
                file_format=file_format)
            table_ref = client.dataset(dataset_name_raw).table(task)
            load_job = client.load_table_from_uri(uri,
                                                  table_ref,
                                                  job_config=job_config)
            submit_bigquery_job(load_job, job_config)
            assert load_job.state == 'DONE'
Пример #5
0
 def __create_load_job_config(
         self, ems_load_job_config: EmsLoadJobConfig) -> LoadJobConfig:
     config = LoadJobConfig()
     config.labels = ems_load_job_config.labels
     config.create_disposition = ems_load_job_config.create_disposition.value
     config.write_disposition = ems_load_job_config.write_disposition.value
     config.schema = _parse_schema_resource(ems_load_job_config.schema)
     config.skip_leading_rows = ems_load_job_config.skip_leading_rows
     return config
Пример #6
0
    def _load_to_bq(self, client, dataset, table_name, table_schema,
                    table_config, key_props, metadata_columns, truncate, rows):
        logger = self.logger
        partition_field = table_config.get("partition_field", None)
        cluster_fields = table_config.get("cluster_fields", None)
        force_fields = table_config.get("force_fields", {})

        schema = build_schema(table_schema,
                              key_properties=key_props,
                              add_metadata=metadata_columns,
                              force_fields=force_fields)
        load_config = LoadJobConfig()
        load_config.ignore_unknown_values = True
        load_config.schema = schema
        if partition_field:
            load_config.time_partitioning = bigquery.table.TimePartitioning(
                type_=bigquery.table.TimePartitioningType.DAY,
                field=partition_field)

        if cluster_fields:
            load_config.clustering_fields = cluster_fields

        load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

        if truncate:
            logger.info(f"Load {table_name} by FULL_TABLE (truncate)")
            load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE
        else:
            logger.info(f"Appending to {table_name}")
            load_config.write_disposition = WriteDisposition.WRITE_APPEND

        logger.info("loading {} to BigQuery".format(table_name))

        load_job = None
        try:
            load_job = client.load_table_from_file(rows,
                                                   dataset.table(table_name),
                                                   job_config=load_config,
                                                   rewind=True)
            logger.info("loading job {}".format(load_job.job_id))
            job = load_job.result()
            logger.info(job._properties)

            return job

        except google_exceptions.BadRequest as err:
            logger.error("failed to load table {} from file: {}".format(
                table_name, str(err)))
            if load_job and load_job.errors:
                reason = err.errors[0]["reason"]
                messages = [f"{err['message']}" for err in load_job.errors]
                logger.error("reason: {reason}, errors:\n{e}".format(
                    reason=reason, e="\n".join(messages)))
                err.message = f"reason: {reason}, errors: {';'.join(messages)}"

            raise err
Пример #7
0
def loadDataFromCSV(tablename, global_dataset_ref, filename):

    schema = getTableSchema(tablename, global_dataset_ref)

    table_ref = global_dataset_ref.table(tablename)

    load_config = LoadJobConfig()
    load_config.source_format = bigquery.SourceFormat.CSV
    load_config.schema = schema
    load_config.autodetect = True
    load_config.allow_quoted_newlines = True
    load_config.encoding = 'UTF-8'

    try:
        with open(filename, 'rb') as readable:
            job = bigquery_client.load_table_from_file(readable,
                                                       table_ref,
                                                       location='US',
                                                       job_config=load_config)
    except Exception as e:
        print("Error")
        print(e)

    job.result()

    print('Loaded {} rows into {}:{}.'.format(job.output_rows,
                                              global_dataset_ref,
                                              table_ref.table_id))

    return


# Testing
# if __name__ == '__main__':
# datasetname = 'Testing'
# tablename = 'SOViews'

# sqlquery = '''SELECT CONCAT(
#   'https://stackoverflow.com/questions/',
#   CAST(id as STRING)) as url,
# view_count
# FROM `bigquery-public-data.stackoverflow.posts_questions`
# WHERE tags like '%google-bigquery%'
# ORDER BY view_count DESC
# LIMIT 10'''

#createDataset(datasetname) #Successfully tested this code 2018-09-24
# global_dataset_ref = getDataset(datasetname) #Successfully tested this code 2018-09-24

#createTable(tablename, global_dataset_ref) #Successfully tested this code 2018-09-24
# getTable(tablename, global_dataset_ref) #Successfully tested this code 2018-09-24

# runBigQueryQuery(sqlquery) #Successfully tested this code 2018-09-24

#loadDataFromCSV(tablename, global_dataset_ref) #Successfully tested this code 2018-09-24
Пример #8
0
    def create_table_from_csv(self, dataset, table_name, file_path, schema):
        table_ref = dataset.table(table_name)

        load_config = LoadJobConfig()
        load_config.skip_leading_rows = 1
        load_config.schema = schema

        with open(file_path, 'rb') as readable:
            self.client.load_table_from_file(
                readable, table_ref, job_config=load_config)  # API request

        return
Пример #9
0
def DTSTableDefinition_to_BQLoadJobConfig(dts_tabledef):
    """
    https://cloud.google.com/bigquery/docs/reference/data-transfer/partner/rpc/google.cloud.bigquery.datatransfer.v1#tabledefinition

    TO

    https://googlecloudplatform.github.io/google-cloud-python/latest/bigquery/reference.html#google.cloud.bigquery.job.LoadJob

    :param dts_tabledef:
    :return:
    """
    from bq_dts import rest_client
    job_config = LoadJobConfig()

    dts_schema = RPCRecordSchema_to_GCloudSchema(dts_tabledef['schema'])
    job_config.schema = dts_schema

    # BQ DTS does not provide controls for the following dispositions
    job_config.create_disposition = bigquery.CreateDisposition.CREATE_IF_NEEDED
    job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE

    if 'format' in dts_tabledef:
        dts_format = dts_tabledef['format']
        source_format = rest_client.BQ_DTS_FORMAT_TO_BQ_SOURCE_FORMAT_MAP[
            dts_format]
        assert source_format is not None
        job_config.source_format = source_format

    if 'max_bad_records' in dts_tabledef:
        job_config.max_bad_records = dts_tabledef['max_bad_records']

    if 'encoding' in dts_tabledef:
        dts_encoding = dts_tabledef['encoding']
        job_config.encoding = rest_client.BQ_DTS_ENCODING_TO_BQ_ENCODING_MAP[
            dts_encoding]

    if 'csv_options' in dts_tabledef:
        csv_opts = dts_tabledef['csv_options']
        if 'field_delimiter' in csv_opts:
            job_config.field_delimiter = csv_opts['field_delimiter']
        if 'allow_quoted_newlines' in csv_opts:
            job_config.allow_quoted_newlines = csv_opts[
                'allow_quoted_newlines']
        if 'quote_char' in csv_opts:
            job_config.quote_character = csv_opts['quote_char']
        if 'skip_leading_rows' in csv_opts:
            job_config.skip_leading_rows = csv_opts['skip_leading_rows']

    return job_config
Пример #10
0
def load_stage(dst_dataset: Dataset, bq_client: Client, bucket_name: str,
               gcs_client: storage.Client) -> List[LoadJob]:
    """
    Stage files from a bucket to a dataset

    :param dst_dataset: reference to destination dataset object
    :param bq_client: a BigQuery client object
    :param bucket_name: the location in GCS containing the vocabulary files
    :param gcs_client: a Cloud Storage client object
    :return: list of completed load jobs
    """
    blobs = list(gcs_client.list_blobs(bucket_name))

    table_blobs = [_filename_to_table_name(blob.name) for blob in blobs]
    missing_blobs = [
        table for table in VOCABULARY_TABLES if table not in table_blobs
    ]
    if missing_blobs:
        raise RuntimeError(
            f'Bucket {bucket_name} is missing files for tables {missing_blobs}'
        )

    load_jobs = []
    for blob in blobs:
        table_name = _filename_to_table_name(blob.name)
        # ignore any non-vocabulary files
        if table_name not in VOCABULARY_TABLES:
            continue
        destination = dst_dataset.table(table_name)
        safe_schema = safe_schema_for(table_name)
        job_config = LoadJobConfig()
        job_config.schema = safe_schema
        job_config.skip_leading_rows = 1
        job_config.field_delimiter = FIELD_DELIMITER
        job_config.max_bad_records = MAX_BAD_RECORDS
        job_config.source_format = 'CSV'
        job_config.quote_character = ''
        source_uri = f'gs://{bucket_name}/{blob.name}'
        load_job = bq_client.load_table_from_uri(source_uri,
                                                 destination,
                                                 job_config=job_config)
        LOGGER.info(f'table:{destination} job_id:{load_job.job_id}')
        load_jobs.append(load_job)
        load_job.result()
    return load_jobs
def loadjob_one(client, dataset_ref, table_name):
    data = [{'keyword': 'dummy-{}'.format(str(time.time())),
             'partition_value': '2019-12-24'}]
    table_ref = dataset_ref.table(table_name)
    table_obj = Table(table_ref, schema=TABLE_SCHEMA)
    job_config = LoadJobConfig()
    job_config.schema = TABLE_SCHEMA
    result_obj = client.load_table_from_json(data, table_obj, job_config=job_config)

    sleep_time = 1
    while result_obj.done() is False:
        LOGGER.info('waiting for %s second. data insertion.', sleep_time)
        time.sleep(sleep_time)

    if result_obj.errors:
        error_msg = 'Failed to insert: error_msg=%s' % result_obj.errors
        LOGGER.error(error_msg)
        raise FailedInsertingSerpCacheBigQueryException(error_msg)
Пример #12
0
    def create_table(self, path, table_from='uri'):
        bp = BQParser(path)
        dataset_name = bp.dataset_name
        table_name = bp.table_name
        skip_leading_rows = bp.skip_leading_rows
        schema = bp.schema

        table_ref = self.client.dataset(dataset_name).table(table_name)
        load_config = LoadJobConfig()
        load_config.skip_leading_rows = skip_leading_rows
        load_config.schema = schema
        file_source = bp.properties.get('inputPath')

        if table_from == 'uri':
            self.client.load_table_from_uri(source_uris=file_source,
                                            destination=table_ref,
                                            job_config=load_config)
        else:
            raise ValueError('Not supported')
Пример #13
0
    def push_bq():
        for table in rows.keys():

            table_ref = bigquery_client.dataset(dataset_id).table(table)
            SCHEMA = build_schema(schemas[table])
            load_config = LoadJobConfig()
            load_config.schema = SCHEMA
            load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

            if truncate:
                load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE

            rows[table].seek(0)
            logger.info('loading {} to Bigquery.\n'.format(table))
            load_job = bigquery_client.load_table_from_file(
                rows[table], table_ref, job_config=load_config)
            logger.info('loading job {}'.format(load_job.job_id))
            logger.info(load_job.result())
            rows[table] = TemporaryFile(mode='w+b')
Пример #14
0
def load_folder(dst_dataset: str, bq_client: BQClient, bucket_name: str,
                prefix: str, gcs_client: GCSClient,
                hpo_id: str) -> List[LoadJob]:
    """
    Stage files from a bucket to a dataset

    :param dst_dataset: Identifies the destination dataset
    :param bq_client: a BigQuery client object
    :param bucket_name: the bucket in GCS containing the archive files
    :param prefix: prefix of the filepath URI
    :param gcs_client: a Cloud Storage client object
    :param hpo_id: Identifies the HPO site
    :return: list of completed load jobs
    """
    blobs = list(gcs_client.list_blobs(bucket_name, prefix=prefix))

    load_jobs = []
    for blob in blobs:
        table_name = _filename_to_table_name(blob.name)
        if table_name not in AOU_REQUIRED:
            LOGGER.debug(f'Skipping file for {table_name}')
            continue
        schema = get_table_schema(table_name)
        hpo_table_name = f'{hpo_id}_{table_name}'
        fq_hpo_table = f'{bq_client.project}.{dst_dataset}.{hpo_table_name}'
        destination = Table(fq_hpo_table, schema=schema)
        destination = bq_client.create_table(destination)
        job_config = LoadJobConfig()
        job_config.schema = schema
        job_config.skip_leading_rows = 1
        job_config.source_format = 'CSV'
        source_uri = f'gs://{bucket_name}/{blob.name}'
        load_job = bq_client.load_table_from_uri(
            source_uri,
            destination,
            job_config=job_config,
            job_id_prefix=f"{__file__.split('/')[-1].split('.')[0]}_")
        LOGGER.info(f'table:{destination} job_id:{load_job.job_id}')
        load_jobs.append(load_job)
        load_job.result()
    return load_jobs
Пример #15
0
def persist_lines_job(project_id,
                      dataset_id,
                      lines=None,
                      truncate=False,
                      validate_records=True):
    state = None
    schemas = {}
    rows = {}

    bigquery_client = bigquery.Client(project=project_id)

    for line in lines:
        try:
            msg = singer.parse_message(line)
        except json.decoder.JSONDecodeError:
            logger.error("Unable to parse:\n{}".format(line))
            raise

        if isinstance(msg, singer.RecordMessage):
            if msg.stream not in schemas:
                raise Exception(
                    "A record for stream {} was encountered before a corresponding schema"
                    .format(msg.stream))

            schema = schemas[msg.stream]

            if validate_records:
                validate(msg.record, schema)

            # NEWLINE_DELIMITED_JSON expects JSON string data, with a newline splitting each row.
            rows[msg.stream].write(
                bytes(json.dumps(msg.record) + "\n", "UTF-8"))

            state = None

        elif isinstance(msg, singer.StateMessage):
            logger.debug("Setting state to {}".format(msg.value))
            state = msg.value

        elif isinstance(msg, singer.SchemaMessage):
            table = msg.stream
            schemas[table] = msg.schema
            rows[table] = TemporaryFile(mode="w+b")

        elif isinstance(msg, singer.ActivateVersionMessage):
            # This is experimental and won't be used yet
            pass

        else:
            raise Exception("Unrecognized message {}".format(msg))

    for table in rows.keys():
        table_ref = bigquery_client.dataset(dataset_id).table(table)
        SCHEMA = build_schema(schemas[table])

        load_config = LoadJobConfig()
        load_config.schema = SCHEMA
        load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

        if truncate:
            load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE
        else:
            load_config.schema_update_options = [
                SchemaUpdateOption.ALLOW_FIELD_ADDITION
            ]

        load_job = bigquery_client.load_table_from_file(rows[table],
                                                        table_ref,
                                                        job_config=load_config,
                                                        rewind=True)
        logger.info(
            f"Loading '{table}' to BigQuery as job '{load_job.job_id}'",
            extra={"stream": table})

        try:
            load_job.result()
        except Exception as e:
            logger.error(f"Error on inserting to table '{table}': {str(e)}",
                         extra={"stream": table})
            return

        logger.info(f"Loaded {load_job.output_rows} row(s) to '{table}'",
                    extra={"stream": table})

    return state
Пример #16
0
def create_bq_schema():
    schema = []
    for col in bus_res_keys:
        name = col.split(':')[-1]
        if col in date_cols:
            type = "TIMESTAMP"
        else:
            type = "STRING"
        x = SchemaField(name, type)
        schema.append(x)
    return schema


if __name__ == '__main__':
    client = bigquery.Client(project=PROJECT_ID)
    table_ref = client.dataset('bus').table('bus')

    load_config = LoadJobConfig()
    load_config.skip_leading_rows = 1
    load_config.schema = create_bq_schema()

    bucket = storage.Client(project=PROJECT_ID).bucket(BUCKET)
    for blob in bucket.list_blobs():
        uri = "gs://{bucket}/{filename}".format(bucket=BUCKET,
                                                filename=blob.name)
        print("Loading {}".format(blob.name))
        job = client.load_table_from_uri(uri,
                                         table_ref,
                                         job_config=load_config)
        job.result()
Пример #17
0
def persist_lines_job(
    client,
    dataset,
    lines=None,
    truncate=False,
    forced_fulltables=[],
    validate_records=True,
    table_suffix=None,
):
    state = None
    schemas = {}
    key_properties = {}
    rows = {}
    errors = {}
    table_suffix = table_suffix or ""

    for line in lines:
        try:
            msg = singer.parse_message(line)
        except json.decoder.JSONDecodeError:
            logger.error("Unable to parse:\n{}".format(line))
            raise

        if isinstance(msg, singer.RecordMessage):
            table_name = msg.stream + table_suffix

            if table_name not in schemas:
                raise Exception(
                    "A record for stream {} was encountered before a corresponding schema"
                    .format(table_name))

            schema = schemas[table_name]

            if validate_records:
                validate(msg.record, schema)

            new_rec = filter(schema, msg.record)

            # NEWLINE_DELIMITED_JSON expects literal JSON formatted data, with a newline character splitting each row.
            data = bytes(
                json.dumps(new_rec, cls=DecimalEncoder) + "\n", "UTF-8")

            rows[table_name].write(data)

            state = None

        elif isinstance(msg, singer.StateMessage):
            logger.debug("Setting state to {}".format(msg.value))
            state = msg.value

        elif isinstance(msg, singer.SchemaMessage):
            table_name = msg.stream + table_suffix

            if table_name in rows:
                continue

            schemas[table_name] = msg.schema
            key_properties[table_name] = msg.key_properties
            rows[table_name] = TemporaryFile(mode="w+b")
            errors[table_name] = None

        elif isinstance(msg, singer.ActivateVersionMessage):
            # This is experimental and won't be used yet
            pass

        else:
            raise Exception("Unrecognized message {}".format(msg))

    for table in rows.keys():
        key_props = key_properties[table]
        SCHEMA = build_schema(schemas[table], key_properties=key_props)
        load_config = LoadJobConfig()
        load_config.schema = SCHEMA
        load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

        if truncate or (table in forced_fulltables):
            logger.info(f"Load {table} by FULL_TABLE")
            load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE

        logger.info("loading {} to Bigquery.\n".format(table))

        try:
            load_job = client.load_table_from_file(rows[table],
                                                   dataset.table(table),
                                                   job_config=load_config,
                                                   rewind=True)
            logger.info("loading job {}".format(load_job.job_id))
            logger.info(load_job.result())
        except google_exceptions.BadRequest as err:
            logger.error("failed to load table {} from file: {}".format(
                table, str(err)))
            if load_job.errors:
                messages = [
                    f"reason: {err['reason']}, message: {err['message']}"
                    for err in load_job.errors
                ]
                logger.error("errors:\n{}".format("\n".join(messages)))
            raise

    yield state
def persist_lines_job(project_id,
                      dataset_id,
                      lines=None,
                      truncate=False,
                      validate_records=True):
    state = None
    schemas = {}
    key_properties = {}
    rows = {}
    errors = {}

    bigquery_client = bigquery.Client(project=project_id)

    for line in lines:
        try:
            msg = singer.parse_message(line)
        except json.decoder.JSONDecodeError:
            logger.error("Unable to parse:\n{}".format(line))
            raise

        if isinstance(msg, singer.RecordMessage):
            if msg.stream not in schemas:
                log_message = ('A record for stream {} was encountered '
                               'before a corresponding schema')
                raise Exception(log_message.format(msg.stream))

            schema = schemas[msg.stream]

            msg.record = convert_dict_keys_to_bigquery_format(
                record=msg.record)

            if validate_records:
                validate(msg.record, schema)

            # NEWLINE_DELIMITED_JSON expects literal JSON formatted data,
            # with a newline character splitting each row.
            dat = bytes(simplejson.dumps(msg.record) + '\n', 'UTF-8')

            rows[msg.stream].write(dat)

            state = None

        elif isinstance(msg, singer.StateMessage):
            logger.debug('Setting state to {}'.format(msg.value))
            state = msg.value

        elif isinstance(msg, singer.SchemaMessage):
            table = msg.stream

            schema = convert_schema_column_names_to_bigquery_format(
                schema=msg.schema)

            schemas[table] = schema
            key_properties[table] = msg.key_properties
            rows[table] = TemporaryFile(mode='w+b')
            errors[table] = None
        elif isinstance(msg, singer.ActivateVersionMessage):
            # This is experimental and won't be used yet
            pass

        else:
            raise Exception("Unrecognized message {}".format(msg))

    for table in rows.keys():
        table_ref = bigquery_client.dataset(dataset_id).table(table)

        SCHEMA = build_schema(schemas[table])
        load_config = LoadJobConfig()

        load_config.schema = SCHEMA
        load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

        if truncate:
            load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE

        rows[table].seek(0)
        logger.info("loading {} to Bigquery.\n".format(table))

        load_job = bigquery_client.load_table_from_file(rows[table],
                                                        table_ref,
                                                        job_config=load_config)

        logger.info("loading job {}".format(load_job.job_id))

    return state
Пример #19
0
def persist_lines_job(project_id,
                      dataset_id,
                      lines=None,
                      truncate=False,
                      validate_records=True):
    state = None
    schemas = {}
    key_properties = {}
    tables = {}
    rows = {}
    errors = {}

    bigquery_client = bigquery.Client(project=project_id)

    # try:
    #     dataset = bigquery_client.create_dataset(Dataset(dataset_ref)) or Dataset(dataset_ref)
    # except exceptions.Conflict:
    #     pass

    for line in lines:
        try:
            msg = singer.parse_message(line)
        except json.decoder.JSONDecodeError:
            logger.error("Unable to parse:\n{}".format(line))
            raise

        if isinstance(msg, singer.RecordMessage):
            if msg.stream not in schemas:
                raise Exception(
                    "A record for stream {} was encountered before a corresponding schema"
                    .format(msg.stream))

            schema = schemas[msg.stream]

            if validate_records:
                validate(msg.record, schema)

            # NEWLINE_DELIMITED_JSON expects literal JSON formatted data, with a newline character splitting each row.
            simplified = dict()
            for k in msg.record:
                v = msg.record[k]
                if isinstance(v, decimal.Decimal):
                    v = float(v)
                if isinstance(v, bool):
                    v = str(v)
                simplified[k] = v

            json_row = json.dumps(simplified)

            rows[msg.stream].write(bytes(json_row, "UTF-8"))
            rows[msg.stream].write(bytes("\n", "UTF-8"))
            # rows[msg.stream].write(bytes(str(msg.record) + '\n', 'UTF-8'))

            state = None

        elif isinstance(msg, singer.StateMessage):
            logger.debug("Setting state to {}".format(msg.value))
            state = msg.value

        elif isinstance(msg, singer.SchemaMessage):
            table = msg.stream
            schemas[table] = json.loads(msg.schema)
            key_properties[table] = msg.key_properties
            tables[table] = bigquery.Table(
                bigquery_client.dataset(dataset_id).table(table),
                schema=build_schema(schemas[table]))
            rows[table] = TemporaryFile(mode="w+b")
            errors[table] = None
            try:
                tables[table] = bigquery_client.create_table(tables[table])
            except exceptions.Conflict:
                pass

        elif isinstance(msg, singer.ActivateVersionMessage):
            # This is experimental and won't be used yet
            pass

        else:
            raise Exception("Unrecognized message {}".format(msg))

    for table in rows.keys():
        table_ref = bigquery_client.dataset(dataset_id).table(table)
        SCHEMA = build_schema(schemas[table])
        load_config = LoadJobConfig()
        load_config.schema = SCHEMA
        load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

        if truncate:
            load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE

        rows[table].seek(0)
        logger.info("loading {} to Bigquery.\n".format(table))

        data = rows[table]
        logger.info(
            f"table_ref: {table_ref}, config: {load_config}, data: {data}")

        try:
            load_job = bigquery_client.load_table_from_file(
                data, table_ref, job_config=load_config)

            logger.info("loading job {}".format(load_job.job_id))
            logger.info(load_job.result())
        except exceptions.GoogleAPIError as e:
            logger.error(f"Exception in load job: {e}")
            for er in e.errors:
                logger.error(f"\t Error: {er}")

            raise

    for table in errors.keys():
        if not errors[table]:
            print(
                "Loaded {} row(s) into {}:{}".format(rows[table], dataset_id,
                                                     table),
                tables[table].path)
        else:
            print("Errors: {}", errors[table])

    return state
Пример #20
0
def persist_lines_job(project_id, dataset_id, lines=None, truncate=False, validate_records=True):
    state = None
    schemas = {}
    key_properties = {}
    tables = {}
    rows = {}
    errors = {}

    bigquery_client = bigquery.Client(project=project_id)

    # try:
    #     dataset = bigquery_client.create_dataset(Dataset(dataset_ref)) or Dataset(dataset_ref)
    # except exceptions.Conflict:
    #     pass

    for line in lines:
        try:
            msg = singer.parse_message(line)
        except json.decoder.JSONDecodeError:
            logger.error("Unable to parse:\n{}".format(line))
            raise

        if isinstance(msg, singer.RecordMessage):
            if msg.stream not in schemas:
                raise Exception(
                    "A record for stream {} was encountered before a corresponding schema".format(msg.stream))

            schema = schemas[msg.stream]

            if validate_records:
                validate(msg.record, schema)

            # NEWLINE_DELIMITED_JSON expects literal JSON formatted data, with a newline character splitting each row.
            dat = bytes(json.dumps(msg.record) + '\n', 'UTF-8')

            rows[msg.stream].write(dat)
            # rows[msg.stream].write(bytes(str(msg.record) + '\n', 'UTF-8'))

            state = None

        elif isinstance(msg, singer.StateMessage):
            logger.debug('Setting state to {}'.format(msg.value))
            state = msg.value

        elif isinstance(msg, singer.SchemaMessage):
            table = msg.stream
            schemas[table] = msg.schema
            key_properties[table] = msg.key_properties
            # tables[table] = bigquery.Table(dataset.table(table), schema=build_schema(schemas[table]))
            rows[table] = TemporaryFile(mode='w+b')
            errors[table] = None
            # try:
            #     tables[table] = bigquery_client.create_table(tables[table])
            # except exceptions.Conflict:
            #     pass

        elif isinstance(msg, singer.ActivateVersionMessage):
            # This is experimental and won't be used yet
            pass

        else:
            raise Exception("Unrecognized message {}".format(msg))

    for table in rows.keys():
        table_ref = bigquery_client.dataset(dataset_id).table(table)
        SCHEMA = build_schema(schemas[table])
        load_config = LoadJobConfig()
        load_config.schema = SCHEMA
        load_config.source_format = SourceFormat.NEWLINE_DELIMITED_JSON

        if truncate:
            load_config.write_disposition = WriteDisposition.WRITE_TRUNCATE

        rows[table].seek(0)
        logger.info("loading {} to Bigquery.\n".format(table))
        load_job = bigquery_client.load_table_from_file(
            rows[table], table_ref, job_config=load_config)
        logger.info("loading job {}".format(load_job.job_id))
        logger.info(load_job.result())

    # for table in errors.keys():
    #     if not errors[table]:
    #         print('Loaded {} row(s) into {}:{}'.format(rows[table], dataset_id, table), tables[table].path)
    #     else:
    #         print('Errors:', errors[table], sep=" ")

    return state
Пример #21
0
    bigquery.SchemaField("PassengerId", "STRING"),
    bigquery.SchemaField("Survived", "STRING"),
    bigquery.SchemaField("Pclass", "STRING"),
    bigquery.SchemaField("Name", "STRING"),
    bigquery.SchemaField("Sex", "STRING"),
    bigquery.SchemaField("Age", "STRING"),
    bigquery.SchemaField("SibSp", "STRING"),
    bigquery.SchemaField("Parch", "STRING"),
    bigquery.SchemaField("Ticket", "STRING"),
    bigquery.SchemaField("Fare", "STRING"),
    bigquery.SchemaField("Cabin", "STRING"),
    bigquery.SchemaField("Embarked", "STRING"),
]
table_ref = dataset_ref.table(table_id)
table = bigquery.Table(table_ref, schema=schema)
table = bigquery_client.create_table(table)

## Loading data
load_config = LoadJobConfig()
load_config.skip_leading_rows = 1
load_config.schema = schema
uri = 'gs://landing_stage_standard/landing/titanic.csv'
load_job = bigquery_client.load_table_from_uri(uri,
                                               table_ref,
                                               job_config=load_config)

load_job.result()

destination_table = bigquery_client.get_table(table_ref)
print('Loaded {} rows.'.format(destination_table.num_rows))