Пример #1
0
    def create_kpoint_descriptor(self, nspins):
        par = self.parameters

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kpt_refine = par.experimental.get('kpt_refine')
        if kpt_refine is None:
            kd = KPointDescriptor(bzkpts_kc, nspins)

            self.timer.start('Set symmetry')
            kd.set_symmetry(self.atoms, self.symmetry, comm=self.world)
            self.timer.stop('Set symmetry')

        else:
            self.timer.start('Set k-point refinement')
            kd = create_kpoint_descriptor_with_refinement(kpt_refine,
                                                          bzkpts_kc,
                                                          nspins,
                                                          self.atoms,
                                                          self.symmetry,
                                                          comm=self.world,
                                                          timer=self.timer)
            self.timer.stop('Set k-point refinement')
            # Update quantities which might have changed, if symmetry
            # was changed
            self.symmetry = kd.symmetry
            self.setups.set_symmetry(kd.symmetry)

        self.log(kd)

        return kd
Пример #2
0
    def get_ibz_q_points(self, bz_k_points):

        # Get all q-points
        all_qs = []
        for k1 in bz_k_points:
            for k2 in bz_k_points:
                all_qs.append(k1-k2)
        all_qs = np.array(all_qs)

        # Fold q-points into Brillouin zone
        all_qs[np.where(all_qs > 0.501)] -= 1.
        all_qs[np.where(all_qs < -0.499)] += 1.

        # Make list of non-identical q-points in full BZ
        bz_qs = [all_qs[0]]
        for q_a in all_qs:
            q_in_list = False
            for q_b in bz_qs:
                if (abs(q_a[0]-q_b[0]) < 0.01 and
                    abs(q_a[1]-q_b[1]) < 0.01 and
                    abs(q_a[2]-q_b[2]) < 0.01):
                    q_in_list = True
                    break
            if q_in_list == False:
                bz_qs.append(q_a)
        self.bz_q_points = bz_qs
    
        # Obtain q-points and weights in the irreducible part of the BZ
        kpt_descriptor = KPointDescriptor(bz_qs, self.nspins)
        kpt_descriptor.set_symmetry(self.atoms, self.setups, usesymm=True)
        ibz_q_points = kpt_descriptor.ibzk_kc
        q_weights = kpt_descriptor.weight_k
        return ibz_q_points, q_weights
Пример #3
0
    def get_ibz_q_points(self, bz_k_points):

        # Get all q-points
        all_qs = []
        for k1 in bz_k_points:
            for k2 in bz_k_points:
                all_qs.append(k1 - k2)
        all_qs = np.array(all_qs)

        # Fold q-points into Brillouin zone
        all_qs[np.where(all_qs > 0.501)] -= 1.
        all_qs[np.where(all_qs < -0.499)] += 1.

        # Make list of non-identical q-points in full BZ
        bz_qs = [all_qs[0]]
        for q_a in all_qs:
            q_in_list = False
            for q_b in bz_qs:
                if (abs(q_a[0] - q_b[0]) < 0.01 and abs(q_a[1] - q_b[1]) < 0.01
                        and abs(q_a[2] - q_b[2]) < 0.01):
                    q_in_list = True
                    break
            if q_in_list == False:
                bz_qs.append(q_a)
        self.bz_q_points = bz_qs

        # Obtain q-points and weights in the irreducible part of the BZ
        kpt_descriptor = KPointDescriptor(bz_qs, self.nspins)
        kpt_descriptor.set_symmetry(self.atoms, self.setups, usesymm=True)
        ibz_q_points = kpt_descriptor.ibzk_kc
        q_weights = kpt_descriptor.weight_k
        return ibz_q_points, q_weights
Пример #4
0
    def setUp(self):
        for virtvar in ['boundaries']:
            assert getattr(self,
                           virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        res, N_c = shapeopt(100, self.G**3, 3, 0.2)
        #N_c = 4*np.round(np.array(N_c)/4) # makes domain decomposition easier
        cell_cv = self.h * np.diag(N_c)
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]

        # Create randomized gas-like atomic configuration on interim grid
        tmpgd = GridDescriptor(N_c, cell_cv, pbc_c)
        self.atoms = create_random_atoms(tmpgd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        assert 1 == self.nspins
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil(
            (10 / Bohr) / np.sum(cell_cv**2, axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c * pbc_c + 1 - pbc_c)
        self.bzk_kc = kpts2ndarray(kpts_c)

        # Set up k-point descriptor
        self.kd = KPointDescriptor(self.bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)

        # Set the dtype
        if self.kd.gamma:
            self.dtype = float
        else:
            self.dtype = complex

        # Create communicators
        parsize, parsize_bands = self.get_parsizes()
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(
            parsize, parsize_bands, self.nspins, self.kd.nibzkpts)

        self.kd.set_communicator(kpt_comm)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)

        # Set up kpoint/spin descriptor (to be removed):
        self.kd_old = KPointDescriptorOld(self.nspins, self.kd.nibzkpts,
                                          kpt_comm, self.kd.gamma, self.dtype)
Пример #5
0
    def ibz2bz(self, atoms):
        """Transform wave functions in IBZ to the full BZ."""

        assert self.kd.comm.size == 1

        # New k-point descriptor for full BZ:
        kd = KPointDescriptor(self.kd.bzk_kc, nspins=self.nspins)
        #kd.set_symmetry(atoms, self.setups, enabled=False)
        kd.set_communicator(serial_comm)

        self.pt = LFC(self.gd, [setup.pt_j for setup in self.setups],
                      kd,
                      dtype=self.dtype)
        self.pt.set_positions(atoms.get_scaled_positions())

        self.initialize_wave_functions_from_restart_file()

        weight = 2.0 / kd.nspins / kd.nbzkpts

        # Build new list of k-points:
        kpt_u = []
        for s in range(self.nspins):
            for k in range(kd.nbzkpts):
                # Index of symmetry related point in the IBZ
                ik = self.kd.bz2ibz_k[k]
                r, u = self.kd.get_rank_and_index(s, ik)
                assert r == 0
                kpt = self.kpt_u[u]

                phase_cd = np.exp(2j * np.pi * self.gd.sdisp_cd *
                                  kd.bzk_kc[k, :, np.newaxis])

                # New k-point:
                kpt2 = KPoint(weight, s, k, k, phase_cd)
                kpt2.f_n = kpt.f_n / kpt.weight / kd.nbzkpts * 2 / self.nspins
                kpt2.eps_n = kpt.eps_n.copy()

                # Transform wave functions using symmetry operation:
                Psit_nG = self.gd.collect(kpt.psit_nG)
                if Psit_nG is not None:
                    Psit_nG = Psit_nG.copy()
                    for Psit_G in Psit_nG:
                        Psit_G[:] = self.kd.transform_wave_function(Psit_G, k)
                kpt2.psit_nG = self.gd.empty(self.bd.nbands, dtype=self.dtype)
                self.gd.distribute(Psit_nG, kpt2.psit_nG)

                # Calculate PAW projections:
                kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
                self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)

                kpt_u.append(kpt2)

        self.kd = kd
        self.kpt_u = kpt_u
Пример #6
0
    def ibz2bz(self, atoms):
        """Transform wave functions in IBZ to the full BZ."""

        assert self.kd.comm.size == 1

        # New k-point descriptor for full BZ:
        kd = KPointDescriptor(self.kd.bzk_kc, nspins=self.nspins)
        kd.set_symmetry(atoms, self.setups, usesymm=None)
        kd.set_communicator(serial_comm)

        self.pt = LFC(self.gd, [setup.pt_j for setup in self.setups],
                      kd, dtype=self.dtype)
        self.pt.set_positions(atoms.get_scaled_positions())

        self.initialize_wave_functions_from_restart_file()

        weight = 2.0 / kd.nspins / kd.nbzkpts
        
        # Build new list of k-points:
        kpt_u = []
        for s in range(self.nspins):
            for k in range(kd.nbzkpts):
                # Index of symmetry related point in the IBZ
                ik = self.kd.bz2ibz_k[k]
                r, u = self.kd.get_rank_and_index(s, ik)
                assert r == 0
                kpt = self.kpt_u[u]
            
                phase_cd = np.exp(2j * np.pi * self.gd.sdisp_cd *
                                  kd.bzk_kc[k, :, np.newaxis])

                # New k-point:
                kpt2 = KPoint(weight, s, k, k, phase_cd)
                kpt2.f_n = kpt.f_n / kpt.weight / kd.nbzkpts * 2 / self.nspins
                kpt2.eps_n = kpt.eps_n.copy()
                
                # Transform wave functions using symmetry operation:
                Psit_nG = self.gd.collect(kpt.psit_nG)
                if Psit_nG is not None:
                    Psit_nG = Psit_nG.copy()
                    for Psit_G in Psit_nG:
                        Psit_G[:] = self.kd.transform_wave_function(Psit_G, k)
                kpt2.psit_nG = self.gd.empty(self.bd.nbands, dtype=self.dtype)
                self.gd.distribute(Psit_nG, kpt2.psit_nG)

                # Calculate PAW projections:
                kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
                self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)
                
                kpt_u.append(kpt2)

        self.kd = kd
        self.kpt_u = kpt_u
Пример #7
0
    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Create randomized atoms
        self.atoms = create_random_atoms(self.gd, 5) # also tested: 10xNH3/BDA

        # XXX DEBUG START
        if False:
            from ase import view
            view(self.atoms*(1+2*self.gd.pbc_c))
        # XXX DEBUG END

        # Do we agree on the atomic positions?
        pos_ac = self.atoms.get_positions()
        pos_rac = np.empty((world.size,)+pos_ac.shape, pos_ac.dtype)
        world.all_gather(pos_ac, pos_rac)
        if (pos_rac-pos_rac[world.rank,...][np.newaxis,...]).any():
            raise RuntimeError('Discrepancy in atomic positions detected.')

        # Create setups for atoms
        self.Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(self.Z_a, p.setups, p.basis,
                             p.lmax, xc)

        # K-point descriptor
        bzk_kc = np.array([[0, 0, 0]], dtype=float)
        self.kd = KPointDescriptor(bzk_kc, 1)
        self.kd.set_symmetry(self.atoms, self.setups)
        self.kd.set_communicator(self.kpt_comm)

        # Create gamma-point dummy wavefunctions
        self.wfs = FDWFS(self.gd, self.bd, self.kd, self.setups,
                         self.block_comm, self.dtype)

        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.wfs.set_positions(spos_ac)
        self.pt = self.wfs.pt # XXX shortcut

        ## Also create pseudo partial waveves
        #from gpaw.lfc import LFC
        #self.phit = LFC(self.gd, [setup.phit_j for setup in self.setups], \
        #                self.kpt_comm, dtype=self.dtype)
        #self.phit.set_positions(spos_ac)

        self.r_cG = None
        self.buf_G = None
        self.psit_nG = None

        self.allocate()
Пример #8
0
    def __init__(self, calc, xc, ibzq_qc, fd, unit_cells, density_cut, ecut,
                 tag, timer):

        self.calc = calc
        self.gd = calc.density.gd
        self.xc = xc
        self.ibzq_qc = ibzq_qc
        self.fd = fd
        self.unit_cells = unit_cells
        self.density_cut = density_cut
        self.ecut = ecut
        self.tag = tag
        self.timer = timer

        self.A_x = -(3 / 4.) * (3 / np.pi)**(1 / 3.)

        self.n_g = calc.get_all_electron_density(gridrefinement=1)
        self.n_g *= Bohr**3

        if xc[-3:] == 'PBE':
            nf_g = calc.get_all_electron_density(gridrefinement=2)
            nf_g *= Bohr**3
            gdf = self.gd.refine()
            grad_v = [Gradient(gdf, v, n=1).apply for v in range(3)]
            gradnf_vg = gdf.empty(3)
            for v in range(3):
                grad_v[v](nf_g, gradnf_vg[v])
            self.gradn_vg = gradnf_vg[:, ::2, ::2, ::2]

        qd = KPointDescriptor(self.ibzq_qc)
        self.pd = PWDescriptor(ecut / Hartree, self.gd, complex, qd)
Пример #9
0
def get_pw_descriptor(q_c, calc, ecut, gammacentered=False):
    """Get the planewave descriptor of q_c."""
    qd = KPointDescriptor([q_c])
    pd = PWDescriptor(ecut,
                      calc.wfs.gd,
                      complex,
                      qd,
                      gammacentered=gammacentered)
    return pd
Пример #10
0
    def initialize(self, density, hamiltonian, wfs, occupations):
        self.xc.initialize(density, hamiltonian, wfs, occupations)
        self.nspins = wfs.nspins
        self.setups = wfs.setups
        self.density = density
        self.kpt_u = wfs.kpt_u

        self.gd = density.gd
        self.kd = wfs.kd
        self.bd = wfs.bd
        if self.bd.comm.size > 1:
            raise ValueError('Band parallelization not supported by hybridk')
        self.wfs = wfs

        self.world = wfs.world

        self.fd = logfile(self.fd, self.world.rank)

        N = self.gd.N_c.prod()
        vol = self.gd.dv * N

        if self.alpha is None:
            # XXX ?
            self.alpha = 6 * vol**(2 / 3.0) / pi**2

        if self.ecut is None:
            self.ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max() * 0.9999

        self.bzq_qc = self.kd.get_bz_q_points()
        qd = KPointDescriptor(self.bzq_qc)
        q0 = self.kd.where_is_q(np.zeros(3), self.bzq_qc)

        self.pwd = PWDescriptor(self.ecut, self.gd, complex, kd=qd)

        G2_qG = self.pwd.G2_qG
        G2_qG[q0][0] = 117.0
        self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
        G2_qG[q0][0] = 0.0
        self.iG2_qG[q0][0] = 0.0

        self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) *
                      self.kd.nbzkpts)

        for q in range(self.kd.nbzkpts):
            self.gamma -= np.dot(np.exp(-self.alpha * G2_qG[q]),
                                 self.iG2_qG[q])

        self.iG2_qG[q0][0] = self.gamma

        self.ghat = LFC(self.gd, [setup.ghat_l for setup in density.setups],
                        qd,
                        dtype=complex)

        self.log('Value of alpha parameter:', self.alpha)
        self.log('Value of gamma parameter:', self.gamma)
        self.log('Cutoff energy:', self.ecut, 'Hartree')
        self.log('%d x %d x %d k-points' % tuple(self.kd.N_c))
Пример #11
0
 def get_PWDescriptor(self, q_c, gammacentered=False):
     """Get the planewave descriptor of q_c."""
     qd = KPointDescriptor([q_c])
     pd = PWDescriptor(self.ecut,
                       self.calc.wfs.gd,
                       complex,
                       qd,
                       gammacentered=gammacentered)
     return pd
Пример #12
0
    def setUp(self):
        for virtvar in ['boundaries']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        res, N_c = shapeopt(100, self.G**3, 3, 0.2)
        #N_c = 4*np.round(np.array(N_c)/4) # makes domain decomposition easier
        cell_cv = self.h * np.diag(N_c)
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]

        # Create randomized gas-like atomic configuration on interim grid
        tmpgd = GridDescriptor(N_c, cell_cv, pbc_c)
        self.atoms = create_random_atoms(tmpgd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        assert 1 == self.nspins
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil((10/Bohr)/np.sum(cell_cv**2,axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c * pbc_c + 1 - pbc_c)
        self.bzk_kc = kpts2ndarray(kpts_c)

        # Set up k-point descriptor
        self.kd = KPointDescriptor(self.bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)

        # Set the dtype
        if self.kd.gamma:
            self.dtype = float
        else:
            self.dtype = complex
            
        # Create communicators
        parsize, parsize_bands = self.get_parsizes()
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize,
            parsize_bands, self.nspins, self.kd.nibzkpts)

        self.kd.set_communicator(kpt_comm)
        
        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)

        # Set up kpoint/spin descriptor (to be removed):
        self.kd_old = KPointDescriptorOld(self.nspins, self.kd.nibzkpts,
                                          kpt_comm, self.kd.gamma, self.dtype)
Пример #13
0
    def calculate(self, q_c, spin='all', A_x=None):
        wfs = self.calc.wfs

        if spin == 'all':
            spins = range(wfs.nspins)
        else:
            assert spin in range(wfs.nspins)
            spins = [spin]

        q_c = np.asarray(q_c, dtype=float)
        qd = KPointDescriptor([q_c])
        pd = PWDescriptor(self.ecut, wfs.gd, complex, qd)

        self.print_chi(pd)

        if extra_parameters.get('df_dry_run'):
            print('    Dry run exit', file=self.fd)
            raise SystemExit

        nG = pd.ngmax
        nw = len(self.omega_w)
        mynG = (nG + self.blockcomm.size - 1) // self.blockcomm.size
        self.Ga = self.blockcomm.rank * mynG
        self.Gb = min(self.Ga + mynG, nG)
        assert mynG * (self.blockcomm.size - 1) < nG

        if A_x is not None:
            nx = nw * (self.Gb - self.Ga) * nG
            chi0_wGG = A_x[:nx].reshape((nw, self.Gb - self.Ga, nG))
            chi0_wGG[:] = 0.0
        else:
            chi0_wGG = np.zeros((nw, self.Gb - self.Ga, nG), complex)

        if np.allclose(q_c, 0.0):
            chi0_wxvG = np.zeros((len(self.omega_w), 2, 3, nG), complex)
            chi0_wvv = np.zeros((len(self.omega_w), 3, 3), complex)
            self.chi0_vv = np.zeros((3, 3), complex)
        else:
            chi0_wxvG = None
            chi0_wvv = None

        print('Initializing PAW Corrections', file=self.fd)
        self.Q_aGii = self.initialize_paw_corrections(pd)

        # Do all empty bands:
        m1 = self.nocc1
        m2 = self.nbands

        self._calculate(pd, chi0_wGG, chi0_wxvG, chi0_wvv, self.Q_aGii, m1, m2,
                        spins)

        return pd, chi0_wGG, chi0_wxvG, chi0_wvv
Пример #14
0
    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Create randomized atoms
        self.atoms = create_random_atoms(self.gd, 5) # also tested: 10xNH3/BDA

        # XXX DEBUG START
        if False:
            from ase import view
            view(self.atoms*(1+2*self.gd.pbc_c))
        # XXX DEBUG END

        # Do we agree on the atomic positions?
        pos_ac = self.atoms.get_positions()
        pos_rac = np.empty((world.size,)+pos_ac.shape, pos_ac.dtype)
        world.all_gather(pos_ac, pos_rac)
        if (pos_rac-pos_rac[world.rank,...][np.newaxis,...]).any():
            raise RuntimeError('Discrepancy in atomic positions detected.')

        # Create setups for atoms
        self.Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(self.Z_a, p.setups, p.basis,
                             p.lmax, xc)

        # K-point descriptor
        bzk_kc = np.array([[0, 0, 0]], dtype=float)
        self.kd = KPointDescriptor(bzk_kc, 1)
        self.kd.set_symmetry(self.atoms, self.setups, usesymm=True)
        self.kd.set_communicator(self.kpt_comm)
        
        # Create gamma-point dummy wavefunctions
        self.wfs = FDWFS(self.gd, self.bd, self.kd, self.setups,
                         self.dtype)
        
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.wfs.set_positions(spos_ac)
        self.pt = self.wfs.pt # XXX shortcut

        ## Also create pseudo partial waveves
        #from gpaw.lfc import LFC
        #self.phit = LFC(self.gd, [setup.phit_j for setup in self.setups], \
        #                self.kpt_comm, dtype=self.dtype)
        #self.phit.set_positions(spos_ac)

        self.r_cG = None
        self.buf_G = None
        self.psit_nG = None

        self.allocate()
Пример #15
0
    def setUp(self):
        for virtvar in ['equipartition']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        kpts = {'even' : (12,1,2), \
                'prime': (23,1,1)}[self.equipartition]

        #primes = [i for i in xrange(50,1,-1) if ~np.any(i%np.arange(2,i)==0)]
        bzk_kc = kpts2ndarray(kpts)
        assert p.usesymm == None
        self.nibzkpts = len(bzk_kc)

        #parsize, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize, parsize_bands = 1, 1 #XXX
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm, p.parallel['stridebands'])

        # Set up grid descriptor:
        res, ngpts = shapeopt(300, self.G**3, 3, 0.2)
        cell_c = self.h * np.array(ngpts)
        pbc_c = (True, False, True)
        self.gd = GridDescriptor(ngpts, cell_c, pbc_c, domain_comm, parsize)

        # Create randomized gas-like atomic configuration
        self.atoms = create_random_atoms(self.gd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Set up kpoint descriptor:
        self.kd = KPointDescriptor(bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)
        self.kd.set_communicator(kpt_comm)
Пример #16
0
def dscf_load_band(filename, paw, molecule=None):
    """Load and distribute all information for a band from a tar file."""
    if not paw.wfs:
        paw.initialize()
    world, bd, gd, kd = paw.wfs.world, paw.wfs.bd, paw.wfs.gd, \
        KPointDescriptor(paw.wfs.nspins, paw.wfs.nibzkpts, paw.wfs.kpt_comm, \
                         paw.wfs.gamma, paw.wfs.dtype)
    if bd.comm.size != 1:
        raise NotImplementedError('Undefined action for band parallelization.')

    r = Reader(filename)
    assert (r.dimension('nspins') == kd.nspins and \
        r.dimension('nibzkpts') == kd.nibzkpts), 'Incompatible spin/kpoints.'

    # Read wave function for every spin/kpoint owned by this rank
    psit_uG = gd.empty(kd.mynks, kd.dtype)
    for myu, psit_G in enumerate(psit_uG):
        u = kd.global_index(myu)
        s, k = kd.what_is(u)
        if gd.comm.rank == 0:
            big_psit_G = np.array(r.get('PseudoWaveFunction', s, k), kd.dtype)
        else:
            big_psit_G = None
        gd.distribute(big_psit_G, psit_G)

    # Find domain ranks for each atom
    atoms = paw.get_atoms()
    spos_ac = atoms.get_scaled_positions() % 1.0
    rank_a = gd.get_ranks_from_positions(spos_ac)
    #my_atom_indices = np.argwhere(rank_a == gd.comm.rank).ravel()
    #assert np.all(my_atom_indices == paw.wfs.pt.my_atom_indices)
    assert r.dimension('nproj') == sum([setup.ni for setup in paw.wfs.setups])

    if molecule is None:
        molecule = range(len(atoms))

    # Read projections for every spin/kpoint and atom owned by this rank
    P_uai = [{}] * kd.mynks  #[paw.wfs.pt.dict() for myu in range(kd.mynks)]
    for myu, P_ai in enumerate(P_uai):
        u = kd.global_index(myu)
        s, k = kd.what_is(u)
        P_i = r.get('Projection', s, k)
        i1 = 0
        for a in molecule:
            setup = paw.wfs.setups[a]
            i2 = i1 + setup.ni
            if gd.comm.rank == rank_a[a]:
                P_ai[a] = np.array(P_i[i1:i2], kd.dtype)
            i1 = i2

    return psit_uG, P_uai
Пример #17
0
    def __init__(self, atoms, kpts, symmetry):
        """Initialize base class and attributes.

        Parameters
        ----------
        atoms: Atoms
            ASE atoms.
        kpts: tuple or list of tuples
            Shape of Monkhorst-Pack grid or list of k-points used in the dfpt
            calculation.
        symmetry: bool or None
            Symmetry parameter used in dfpt calculation.
            
        """

        # Init base class with ``Atoms`` object
        phonons.Phonons.__init__(atoms)

        # Create k-point descriptor
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.calc.wfs.setups, symmetry)

        # Overwrite ``N_c`` attribute
        self.N_c = tuple(self.kd.N_c)

        # Index of the gamma point -- for the acoustic sum-rule
        self.gamma_index = None
        if self.kd.gamma:
            self.gamma_index = 0
            self.dtype == float
        else:
            self.dtype == comples
            for k, k_c in enumerate(self.kd.ibzk_kc):
                if np.all(k_c == 0.):
                    self.gamma_index = k

        assert self.gamma_index is not None
Пример #18
0
    def check(self, i_cG, shift0_c, N_c, q_c, Q_aGii):
        I0_G = np.ravel_multi_index(i_cG - shift0_c[:, None], N_c, 'wrap')
        qd1 = KPointDescriptor([q_c])
        pd1 = PWDescriptor(self.ecut, self.calc.wfs.gd, complex, qd1)
        G_I = np.empty(N_c.prod(), int)
        G_I[:] = -1
        I1_G = pd1.Q_qG[0]
        G_I[I1_G] = np.arange(len(I0_G))
        G_G = G_I[I0_G]
        assert len(I0_G) == len(I1_G)
        assert (G_G >= 0).all()

        for a, Q_Gii in enumerate(self.initialize_paw_corrections(pd1)):
            e = abs(Q_aGii[a] - Q_Gii[G_G]).max()
            assert e < 1e-12
Пример #19
0
    def calculate_gamma(self, vol, alpha):
        if self.molecule:
            return 0.0

        N_c = self.kd.N_c
        offset_c = (N_c + 1) % 2 * 0.5 / N_c
        bzq_qc = monkhorst_pack(N_c) + offset_c
        qd = KPointDescriptor(bzq_qc)
        pd = PWDescriptor(self.wfs.pd.ecut, self.wfs.gd, kd=qd)
        gamma = (vol / (2 * pi)**2 * sqrt(pi / alpha) * self.kd.nbzkpts)
        for G2_G in pd.G2_qG:
            if G2_G[0] < 1e-7:
                G2_G = G2_G[1:]
            gamma -= np.dot(np.exp(-alpha * G2_G), G2_G**-1)
        return gamma / self.qstride_c.prod()
Пример #20
0
def dscf_save_band(filename, paw, n):
    """Extract and save all information for band `n` to a tar file."""
    world, bd, gd, kd = paw.wfs.world, paw.wfs.bd, paw.wfs.gd, \
        KPointDescriptor(paw.wfs.nspins, paw.wfs.nibzkpts, paw.wfs.kpt_comm, \
                         paw.wfs.gamma, paw.wfs.dtype)
    if world.rank == 0:
        # Minimal amount of information needed:
        w = Writer(filename)
        w.dimension('nspins', kd.nspins)
        w.dimension('nibzkpts', kd.nibzkpts)
        w.dimension('nproj', sum([setup.ni for setup in paw.wfs.setups]))
        ng = gd.get_size_of_global_array()
        w.dimension('ngptsx', ng[0])
        w.dimension('ngptsy', ng[1])
        w.dimension('ngptsz', ng[2])

    # Write projections:
    if world.rank == 0:
        w.add('Projection', ('nspins', 'nibzkpts', 'nproj'), dtype=kd.dtype)
    for s in range(kd.nspins):
        for k in range(kd.nibzkpts):
            all_P_ni = paw.wfs.collect_projections(k, s)  # gets all bands
            if world.rank == 0:
                w.fill(all_P_ni[n])

    # Write wave functions:
    if world.rank == 0:
        w.add('PseudoWaveFunction',
              ('nspins', 'nibzkpts', 'ngptsx', 'ngptsy', 'ngptsz'),
              dtype=kd.dtype)
    for s in range(kd.nspins):
        for k in range(kd.nibzkpts):
            psit_G = paw.wfs.get_wave_function_array(n, k, s)
            if world.rank == 0:
                w.fill(psit_G)

    if world.rank == 0:
        # Close the file here to ensure that the last wave function is
        # written to disk:
        w.close()

    # We don't want the slaves to start reading before the master has
    # finished writing:
    world.barrier()
Пример #21
0
    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Set up kpoint descriptor:
        self.kd = KPointDescriptor(self.nspins, self.nibzkpts, self.kpt_comm, \
            self.gamma, self.dtype)

        # Choose a sufficiently small width of gaussian test functions
        cell_c = np.sum(self.gd.cell_cv**2, axis=1)**0.5
        self.sigma = np.min((0.1+0.4*self.gd.pbc_c)*cell_c)

        if debug and world.rank == 0:
            print 'sigma=%8.5f Ang' % (self.sigma*Bohr), 'cell_c:', cell_c*Bohr, 'Ang', 'N_c:', self.gd.N_c
        self.atoms = create_random_atoms(self.gd, 4, 'H', 4*self.sigma)
        self.r_vG = None
        self.wf_uG = None
        self.laplace0_uG = None

        self.allocate()
Пример #22
0
    def calculate_q(self, i, kpt1, kpt2):
        wfs = self.calc.wfs

        q_c = wfs.kd.bzk_kc[kpt2.K] - wfs.kd.bzk_kc[kpt1.K]
        qd = KPointDescriptor([q_c])
        pd = PWDescriptor(self.ecut, wfs.gd, wfs.dtype, kd=qd)

        Q_G = self.get_fft_indices(kpt1.K, kpt2.K, q_c, pd,
                                   kpt1.shift_c - kpt2.shift_c)

        Q_aGii = self.initialize_paw_corrections(pd, soft=True)

        for n in range(kpt1.n2 - kpt1.n1):
            ut1cc_R = kpt1.ut_nR[n].conj()
            C1_aGi = [
                np.dot(Q_Gii, P1_ni[n].conj())
                for Q_Gii, P1_ni in zip(Q_aGii, kpt1.P_ani)
            ]
            n_mG = self.calculate_pair_densities(ut1cc_R, C1_aGi, kpt2, pd,
                                                 Q_G)
            e = self.calculate_n(pd, n, n_mG, kpt2)
            self.exxvv_sin[kpt1.s, i, n] += e
Пример #23
0
    def setUp(self):
        for virtvar in ['equipartition']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        kpts = {'even' : (12,1,2), \
                'prime': (23,1,1)}[self.equipartition]

        #primes = [i for i in xrange(50,1,-1) if ~np.any(i%np.arange(2,i)==0)]
        bzk_kc = kpts2ndarray(kpts)
        assert p.usesymm == None
        self.nibzkpts = len(bzk_kc)

        #parsize_domain, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize_domain, parsize_bands = 1, 1 #XXX
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize_domain,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm, p.parallel['stridebands'])

        # Set up grid descriptor:
        res, ngpts = shapeopt(300, self.G**3, 3, 0.2)
        cell_c = self.h * np.array(ngpts)
        pbc_c = (True, False, True)
        self.gd = GridDescriptor(ngpts, cell_c, pbc_c, domain_comm, parsize_domain)

        # Create randomized gas-like atomic configuration
        self.atoms = create_random_atoms(self.gd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Set up kpoint descriptor:
        self.kd = KPointDescriptor(bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, usesymm=p.usesymm)
        self.kd.set_communicator(kpt_comm)
Пример #24
0
    def __init__(self, atoms, kpts, symmetry):
        """Initialize base class and attributes.

        Parameters
        ----------
        atoms: Atoms
            ASE atoms.
        kpts: tuple or list of tuples
            Shape of Monkhorst-Pack grid or list of k-points used in the dfpt
            calculation.
        symmetry: bool or None
            Symmetry parameter used in dfpt calculation.
            
        """

        # Init base class with ``Atoms`` object
        phonons.Phonons.__init__(atoms)

        # Create k-point descriptor
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.calc.wfs.setups,
                             usesymm=symmetry)

        # Overwrite ``N_c`` attribute
        self.N_c = tuple(self.kd.N_c)

        # Index of the gamma point -- for the acoustic sum-rule
        self.gamma_index = None
        if self.kd.gamma:
            self.gamma_index = 0
            self.dtype == float
        else:
            self.dtype == comples
            for k, k_c in enumerate(self.kd.ibzk_kc):
                if np.all(k_c == 0.):
                    self.gamma_index = k

        assert self.gamma_index is not None
Пример #25
0
class G0W0(PairDensity):
    def __init__(self, calc, filename='gw',
                 kpts=None, bands=None, nbands=None, ppa=False,
                 wstc=False,
                 ecut=150.0, eta=0.1, E0=1.0 * Hartree,
                 domega0=0.025, omega2=10.0,
                 world=mpi.world):
    
        PairDensity.__init__(self, calc, ecut, world=world,
                             txt=filename + '.txt')
        
        self.filename = filename
        
        ecut /= Hartree
        
        self.ppa = ppa
        self.wstc = wstc
        self.eta = eta / Hartree
        self.E0 = E0 / Hartree
        self.domega0 = domega0 / Hartree
        self.omega2 = omega2 / Hartree

        print('  ___  _ _ _ ', file=self.fd)
        print(' |   || | | |', file=self.fd)
        print(' | | || | | |', file=self.fd)
        print(' |__ ||_____|', file=self.fd)
        print(' |___|       ', file=self.fd)
        print(file=self.fd)

        self.kpts = select_kpts(kpts, self.calc)
                
        if bands is None:
            bands = [0, self.nocc2]
            
        self.bands = bands

        b1, b2 = bands
        self.shape = shape = (self.calc.wfs.nspins, len(self.kpts), b2 - b1)
        self.eps_sin = np.empty(shape)     # KS-eigenvalues
        self.f_sin = np.empty(shape)       # occupation numbers
        self.sigma_sin = np.zeros(shape)   # self-energies
        self.dsigma_sin = np.zeros(shape)  # derivatives of self-energies
        self.vxc_sin = None                # KS XC-contributions
        self.exx_sin = None                # exact exchange contributions
        self.Z_sin = None                  # renormalization factors
        
        if nbands is None:
            nbands = int(self.vol * ecut**1.5 * 2**0.5 / 3 / pi**2)
        self.nbands = nbands

        kd = self.calc.wfs.kd

        self.mysKn1n2 = None  # my (s, K, n1, n2) indices
        self.distribute_k_points_and_bands(b1, b2, kd.ibz2bz_k[self.kpts])
        
        # Find q-vectors and weights in the IBZ:
        assert -1 not in kd.bz2bz_ks
        offset_c = 0.5 * ((kd.N_c + 1) % 2) / kd.N_c
        bzq_qc = monkhorst_pack(kd.N_c) + offset_c
        self.qd = KPointDescriptor(bzq_qc)
        self.qd.set_symmetry(self.calc.atoms, self.calc.wfs.setups,
                             usesymm=self.calc.input_parameters.usesymm,
                             N_c=self.calc.wfs.gd.N_c)
        
        assert self.calc.wfs.nspins == 1
        
    @timer('G0W0')
    def calculate(self):
        kd = self.calc.wfs.kd

        self.calculate_ks_xc_contribution()
        self.calculate_exact_exchange()

        # Get KS eigenvalues and occupation numbers:
        b1, b2 = self.bands
        for i, k in enumerate(self.kpts):
            kpt = self.calc.wfs.kpt_u[k]
            self.eps_sin[0, i] = kpt.eps_n[b1:b2]
            self.f_sin[0, i] = kpt.f_n[b1:b2] / kpt.weight

        # My part of the states we want to calculate QP-energies for:
        mykpts = [self.get_k_point(s, K, n1, n2)
                  for s, K, n1, n2 in self.mysKn1n2]
        
        # Loop over q in the IBZ:
        for pd0, W0, q_c in self.calculate_screened_potential():
            for kpt1 in mykpts:
                K2 = kd.find_k_plus_q(q_c, [kpt1.K])[0]
                kpt2 = self.get_k_point(0, K2, 0, self.nbands)
                k1 = kd.bz2ibz_k[kpt1.K]
                i = self.kpts.index(k1)
                self.calculate_q(i, kpt1, kpt2, pd0, W0)

        self.world.sum(self.sigma_sin)
        self.world.sum(self.dsigma_sin)
        
        self.Z_sin = 1 / (1 - self.dsigma_sin)
        self.qp_sin = self.eps_sin + self.Z_sin * (self.sigma_sin +
                                                   self.exx_sin -
                                                   self.vxc_sin)
        
        results = {'f': self.f_sin,
                   'eps': self.eps_sin * Hartree,
                   'vxc': self.vxc_sin * Hartree,
                   'exx': self.exx_sin * Hartree,
                   'sigma': self.sigma_sin * Hartree,
                   'Z': self.Z_sin,
                   'qp': self.qp_sin * Hartree}
      
        self.print_results(results)
        
        return results
        
    def calculate_q(self, i, kpt1, kpt2, pd0, W0):
        wfs = self.calc.wfs
        
        N_c = pd0.gd.N_c
        i_cG = self.sign * np.dot(self.U_cc,
                                  np.unravel_index(pd0.Q_qG[0], N_c))

        q_c = wfs.kd.bzk_kc[kpt2.K] - wfs.kd.bzk_kc[kpt1.K]
        q0 = np.allclose(q_c, 0)

        shift0_c = q_c - self.sign * np.dot(self.U_cc, pd0.kd.bzk_kc[0])
        assert np.allclose(shift0_c.round(), shift0_c)
        shift0_c = shift0_c.round().astype(int)

        shift_c = kpt1.shift_c - kpt2.shift_c - shift0_c
        I_G = np.ravel_multi_index(i_cG + shift_c[:, None], N_c, 'wrap')
        
        G_Gv = pd0.G_Qv[pd0.Q_qG[0]] + pd0.K_qv[0]
        pos_av = np.dot(self.spos_ac, pd0.gd.cell_cv)
        M_vv = np.dot(pd0.gd.cell_cv.T,
                      np.dot(self.U_cc.T,
                             np.linalg.inv(pd0.gd.cell_cv).T))
        
        Q_aGii = []
        for a, Q_Gii in enumerate(self.Q_aGii):
            x_G = np.exp(1j * np.dot(G_Gv, (pos_av[a] -
                                            self.sign *
                                            np.dot(M_vv, pos_av[a]))))
            U_ii = self.calc.wfs.setups[a].R_sii[self.s]
            Q_Gii = np.dot(np.dot(U_ii, Q_Gii * x_G[:, None, None]),
                           U_ii.T).transpose(1, 0, 2)
            Q_aGii.append(Q_Gii)

        if debug:
            self.check(i_cG, shift0_c, N_c, q_c, Q_aGii)
                
        if self.ppa:
            calculate_sigma = self.calculate_sigma_ppa
        else:
            calculate_sigma = self.calculate_sigma
            
        for n in range(kpt1.n2 - kpt1.n1):
            ut1cc_R = kpt1.ut_nR[n].conj()
            eps1 = kpt1.eps_n[n]
            C1_aGi = [np.dot(Q_Gii, P1_ni[n].conj())
                      for Q_Gii, P1_ni in zip(Q_aGii, kpt1.P_ani)]
            n_mG = self.calculate_pair_densities(ut1cc_R, C1_aGi, kpt2,
                                                 pd0, I_G)
            if self.sign == 1:
                n_mG = n_mG.conj()
                
            if q0:
                n_mG[:, 0] = 0
                m = n + kpt1.n1 - kpt2.n1
                if 0 <= m < len(n_mG):
                    n_mG[m, 0] = 1.0
                    
            f_m = kpt2.f_n
            deps_m = eps1 - kpt2.eps_n
            sigma, dsigma = calculate_sigma(n_mG, deps_m, f_m, W0)
            nn = kpt1.n1 + n - self.bands[0]
            self.sigma_sin[kpt1.s, i, nn] += sigma
            self.dsigma_sin[kpt1.s, i, nn] += dsigma
            
    def check(self, i_cG, shift0_c, N_c, q_c, Q_aGii):
        I0_G = np.ravel_multi_index(i_cG - shift0_c[:, None], N_c, 'wrap')
        qd1 = KPointDescriptor([q_c])
        pd1 = PWDescriptor(self.ecut, self.calc.wfs.gd, complex, qd1)
        G_I = np.empty(N_c.prod(), int)
        G_I[:] = -1
        I1_G = pd1.Q_qG[0]
        G_I[I1_G] = np.arange(len(I0_G))
        G_G = G_I[I0_G]
        assert len(I0_G) == len(I1_G)
        assert (G_G >= 0).all()

        for a, Q_Gii in enumerate(self.initialize_paw_corrections(pd1)):
            e = abs(Q_aGii[a] - Q_Gii[G_G]).max()
            assert e < 1e-12

    @timer('Sigma')
    def calculate_sigma(self, n_mG, deps_m, f_m, C_swGG):
        o_m = abs(deps_m)
        # Add small number to avoid zeros for degenerate states:
        sgn_m = np.sign(deps_m + 1e-15)
        
        # Pick +i*eta or -i*eta:
        s_m = (1 + sgn_m * np.sign(0.5 - f_m)).astype(int) // 2
        
        beta = (2**0.5 - 1) * self.domega0 / self.omega2
        w_m = (o_m / (self.domega0 + beta * o_m)).astype(int)
        o1_m = self.omega_w[w_m]
        o2_m = self.omega_w[w_m + 1]
        
        x = 1.0 / (self.qd.nbzkpts * 2 * pi * self.vol)
        sigma = 0.0
        dsigma = 0.0
        for o, o1, o2, sgn, s, w, n_G in zip(o_m, o1_m, o2_m,
                                             sgn_m, s_m, w_m, n_mG):
            C1_GG = C_swGG[s][w]
            C2_GG = C_swGG[s][w + 1]
            p = x * sgn
            sigma1 = p * np.dot(np.dot(n_G, C1_GG), n_G.conj()).imag
            sigma2 = p * np.dot(np.dot(n_G, C2_GG), n_G.conj()).imag
            sigma += ((o - o1) * sigma2 + (o2 - o) * sigma1) / (o2 - o1)
            dsigma += sgn * (sigma2 - sigma1) / (o2 - o1)
            
        return sigma, dsigma

    @timer('W')
    def calculate_screened_potential(self):
        print('Calulating screened Coulomb potential', file=self.fd)
            
        if self.ppa:
            print('Using Godby-Needs plasmon-pole approximation:',
                  file=self.fd)
            print('    Fitting energy: i*E0, E0 = %.3f Hartee' % self.E0,
                  file=self.fd)

            # use small imaginary frequency to avoid dividing by zero:
            frequencies = [1e-10j, 1j * self.E0 * Hartree]
            
            parameters = {'eta': 0,
                          'hilbert': False,
                          'timeordered': False,
                          'frequencies': frequencies}
        else:
            parameters = {'eta': self.eta * Hartree,
                          'hilbert': True,
                          'timeordered': True,
                          'domega0': self.domega0 * Hartree,
                          'omega2': self.omega2 * Hartree}
            
        chi0 = Chi0(self.calc,
                    nbands=self.nbands,
                    ecut=self.ecut * Hartree,
                    intraband=False,
                    real_space_derivatives=False,
                    txt=self.filename + '.w.txt',
                    timer=self.timer,
                    **parameters)
        
        self.omega_w = chi0.omega_w
        self.omegamax = chi0.omegamax
        
        htp = HilbertTransform(self.omega_w, self.eta, gw=True)
        htm = HilbertTransform(self.omega_w, -self.eta, gw=True)
            
        for iq, q_c in enumerate(self.qd.ibzk_kc):
            if self.wstc:
                wstc = WignerSeitzTruncatedCoulomb(
                    self.calc.wfs.gd.cell_cv,
                    self.calc.wfs.kd.N_c,
                    chi0.fd)
            else:
                wstc = None
                
            pd, chi0_wGG = chi0.calculate(q_c)[:2]
            self.Q_aGii = chi0.Q_aGii
            W = self.calculate_w(pd, chi0_wGG, q_c, htp, htm, wstc)
            
            Q1 = self.qd.ibz2bz_k[iq]
            done = set()
            for s, Q2 in enumerate(self.qd.bz2bz_ks[Q1]):
                if Q2 >= 0 and Q2 not in done:
                    s = self.qd.sym_k[Q2]
                    self.s = s
                    self.U_cc = self.qd.symmetry.op_scc[s]
                    time_reversal = self.qd.time_reversal_k[Q2]
                    self.sign = 1 - 2 * time_reversal
                    Q_c = self.qd.bzk_kc[Q2]
                    d_c = self.sign * np.dot(self.U_cc, q_c) - Q_c
                    assert np.allclose(d_c.round(), d_c)
                    yield pd, W, Q_c
                    done.add(Q2)
    
    @timer('WW')
    def calculate_w(self, pd, chi0_wGG, q_c, htp, htm, wstc):
        if self.wstc:
            iG_G = (wstc.get_potential(pd) / (4 * pi))**0.5
            if np.allclose(q_c, 0):
                chi0_wGG[:, 0] = 0.0
                chi0_wGG[:, :, 0] = 0.0
                G0inv = 0.0
                G20inv = 0.0
            else:
                G0inv = None
                G20inv = None
        else:
            if np.allclose(q_c, 0):
                dq3 = (2 * pi)**3 / (self.qd.nbzkpts * self.vol)
                qc = (dq3 / 4 / pi * 3)**(1 / 3)
                G0inv = 2 * pi * qc**2 / dq3
                G20inv = 4 * pi * qc / dq3
                G_G = pd.G2_qG[0]**0.5
                G_G[0] = 1
                iG_G = 1 / G_G
            else:
                iG_G = pd.G2_qG[0]**-0.5
                G0inv = None
                G20inv = None

        delta_GG = np.eye(len(iG_G))

        if self.ppa:
            return self.ppa_w(chi0_wGG, iG_G, delta_GG, G0inv, G20inv, q_c)
            
        self.timer.start('Dyson eq.')
        # Calculate W and store it in chi0_wGG ndarray:
        for chi0_GG in chi0_wGG:
            e_GG = (delta_GG -
                    4 * pi * chi0_GG * iG_G * iG_G[:, np.newaxis])
            W_GG = chi0_GG
            W_GG[:] = 4 * pi * (np.linalg.inv(e_GG) -
                                delta_GG) * iG_G * iG_G[:, np.newaxis]
            if np.allclose(q_c, 0):
                W_GG[0, 0] *= G20inv
                W_GG[1:, 0] *= G0inv
                W_GG[0, 1:] *= G0inv
                
        Wp_wGG = chi0_wGG.copy()
        Wm_wGG = chi0_wGG
        with self.timer('Hilbert transform'):
            htp(Wp_wGG)
            htm(Wm_wGG)
        self.timer.stop('Dyson eq.')
        
        return [Wp_wGG, Wm_wGG]

    @timer('Kohn-Sham XC-contribution')
    def calculate_ks_xc_contribution(self):
        name = self.filename + '.vxc.npy'
        fd = opencew(name)
        if fd is None:
            print('Reading Kohn-Sham XC contribution from file:', name,
                  file=self.fd)
            with open(name) as fd:
                self.vxc_sin = np.load(fd)
            assert self.vxc_sin.shape == self.shape, self.vxc_sin.shape
            return
            
        print('Calculating Kohn-Sham XC contribution', file=self.fd)
        vxc_skn = vxc(self.calc, self.calc.hamiltonian.xc) / Hartree
        n1, n2 = self.bands
        self.vxc_sin = vxc_skn[:, self.kpts, n1:n2]
        np.save(fd, self.vxc_sin)
        
    @timer('EXX')
    def calculate_exact_exchange(self):
        name = self.filename + '.exx.npy'
        fd = opencew(name)
        if fd is None:
            print('Reading EXX contribution from file:', name, file=self.fd)
            with open(name) as fd:
                self.exx_sin = np.load(fd)
            assert self.exx_sin.shape == self.shape, self.exx_sin.shape
            return
            
        print('Calculating EXX contribution', file=self.fd)
        exx = EXX(self.calc, kpts=self.kpts, bands=self.bands,
                  txt=self.filename + '.exx.txt', timer=self.timer)
        exx.calculate()
        self.exx_sin = exx.get_eigenvalue_contributions() / Hartree
        np.save(fd, self.exx_sin)

    def print_results(self, results):
        description = ['f:     Occupation numbers',
                       'eps:   KS-eigenvalues [eV]',
                       'vxc:   KS vxc [eV]',
                       'exx:   Exact exchange [eV]',
                       'sigma: Self-energies [eV]',
                       'Z:     Renormalization factors',
                       'qp:    QP-energies [eV]']

        print('\nResults:', file=self.fd)
        for line in description:
            print(line, file=self.fd)
            
        b1, b2 = self.bands
        names = [line.split(':', 1)[0] for line in description]
        ibzk_kc = self.calc.wfs.kd.ibzk_kc
        for s in range(self.calc.wfs.nspins):
            for i, ik in enumerate(self.kpts):
                print('\nk-point ' +
                      '{0} ({1}): ({2:.3f}, {3:.3f}, {4:.3f})'.format(
                          i, ik, *ibzk_kc[ik]), file=self.fd)
                print('band' +
                      ''.join('{0:>8}'.format(name) for name in names),
                      file=self.fd)
                for n in range(b2 - b1):
                    print('{0:4}'.format(n + b1) +
                          ''.join('{0:8.3f}'.format(results[name][s, i, n])
                                  for name in names),
                          file=self.fd)

        self.timer.write(self.fd)

    @timer('PPA')
    def ppa_w(self, chi0_wGG, iG_G, delta_GG, G0inv, G20inv, q_c):
        einv_wGG = []
        for chi0_GG in chi0_wGG:
            e_GG = (delta_GG -
                    4 * pi * chi0_GG * iG_G * iG_G[:, np.newaxis])
            einv_wGG.append(np.linalg.inv(e_GG) - delta_GG)

        if self.wstc and np.allclose(q_c, 0):
            einv_wGG[0][0] = 42
            einv_wGG[0][:, 0] = 42
        omegat_GG = self.E0 * np.sqrt(einv_wGG[1] /
                                      (einv_wGG[0] - einv_wGG[1]))
        R_GG = -0.5 * omegat_GG * einv_wGG[0]
        W_GG = 4 * pi**2 * R_GG * iG_G * iG_G[:, np.newaxis]
        if np.allclose(q_c, 0):
            W_GG[0, 0] *= G20inv
            W_GG[1:, 0] *= G0inv
            W_GG[0, 1:] *= G0inv

        return [W_GG, omegat_GG]
        
    @timer('PPA-Sigma')
    def calculate_sigma_ppa(self, n_mG, deps_m, f_m, W):
        W_GG, omegat_GG = W
        deps_mGG = deps_m[:, np.newaxis, np.newaxis]
        sign_mGG = 2 * f_m[:, np.newaxis, np.newaxis] - 1
        x1_mGG = 1 / (deps_mGG + omegat_GG - 1j * self.eta)
        x2_mGG = 1 / (deps_mGG - omegat_GG + 1j * self.eta)
        x3_mGG = 1 / (deps_mGG + omegat_GG - 1j * self.eta * sign_mGG)
        x4_mGG = 1 / (deps_mGG - omegat_GG - 1j * self.eta * sign_mGG)
        x_mGG = W_GG * (sign_mGG * (x1_mGG - x2_mGG) + x3_mGG + x4_mGG)
        dx_mGG = W_GG * (sign_mGG * (x1_mGG**2 - x2_mGG**2) +
                         x3_mGG**2 + x4_mGG**2)

        sigma = 0.0
        dsigma = 0.0
        for m in range(np.shape(n_mG)[0]):
            nW_mG = np.dot(n_mG[m], x_mGG[m])
            sigma += np.vdot(n_mG[m], nW_mG).real
            nW_mG = np.dot(n_mG[m], dx_mGG[m])
            dsigma -= np.vdot(n_mG[m], nW_mG).real
        
        x = 1 / (self.qd.nbzkpts * 2 * pi * self.vol)
        return x * sigma, x * dsigma
Пример #26
0
class UTKPointParallelSetup(TestCase):
    """
    Setup a simple kpoint parallel calculation."""

    # Number of bands
    nbands = 1

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    ## Symmetry-reduction of k-points TODO
    #symmetry = p.usesymm #XXX 'None' is an allowed value!!!

    # Whether spin/k-points are equally distributed (determines nibzkpts)
    equipartition = None
    nibzkpts = None

    gamma = False # can't be gamma point when nibzkpts > 1 ...
    dtype = complex #XXX virtual so far..

    # =================================

    def setUp(self):
        for virtvar in ['equipartition']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        kpts = {'even' : (12,1,2), \
                'prime': (23,1,1)}[self.equipartition]

        #primes = [i for i in xrange(50,1,-1) if ~np.any(i%np.arange(2,i)==0)]
        bzk_kc = kpts2ndarray(kpts)
        assert p.usesymm == None
        self.nibzkpts = len(bzk_kc)

        #parsize_domain, parsize_bands = create_parsize_minbands(self.nbands, world.size)
        parsize_domain, parsize_bands = 1, 1 #XXX
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize_domain,
            parsize_bands, self.nspins, self.nibzkpts)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm, p.parallel['stridebands'])

        # Set up grid descriptor:
        res, ngpts = shapeopt(300, self.G**3, 3, 0.2)
        cell_c = self.h * np.array(ngpts)
        pbc_c = (True, False, True)
        self.gd = GridDescriptor(ngpts, cell_c, pbc_c, domain_comm, parsize_domain)

        # Create randomized gas-like atomic configuration
        self.atoms = create_random_atoms(self.gd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Set up kpoint descriptor:
        self.kd = KPointDescriptor(bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, usesymm=p.usesymm)
        self.kd.set_communicator(kpt_comm)

    def tearDown(self):
        del self.bd, self.gd, self.kd
        del self.setups, self.atoms

    def get_parsizes(self): #XXX NO LONGER IN UT_HSOPS?!?
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize_domain, parsize_bands

        # Choose the largest possible parallelization over kpoint/spins
        test_parsize_ks_pairs = gcd(self.nspins*self.nibzkpts, world.size)
        remsize = world.size//test_parsize_ks_pairs

        # If parsize_bands is not set, choose the largest possible
        test_parsize_bands = parsize_bands or gcd(self.nbands, remsize)

        # If parsize_bands is not set, choose as few domains as possible
        test_parsize_domain = parsize_domain or (remsize//test_parsize_bands)

        return test_parsize_domain, test_parsize_bands

    # =================================

    def verify_comm_sizes(self): #TODO needs work
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd.comm]])
        self._parinfo =  '%d world, %d band, %d domain, %d kpt' % comm_sizes
        #self.assertEqual((self.nspins*self.nibzkpts) % self.kd.comm.size, 0) #XXX

    def verify_slice_consistency(self):
        for kpt_rank in range(self.kd.comm.size):
            uslice = self.kd.get_slice(kpt_rank)
            myus = np.arange(*uslice.indices(self.kd.nks))
            for myu,u in enumerate(myus):
                self.assertEqual(self.kd.who_has(u), (kpt_rank, myu))

    def verify_combination_consistency(self):
        for u in range(self.kd.nks):
            s, k = self.kd.what_is(u)
            self.assertEqual(self.kd.where_is(s, k), u)

        for s in range(self.kd.nspins):
            for k in range(self.kd.nibzkpts):
                u = self.kd.where_is(s, k)
                self.assertEqual(self.kd.what_is(u), (s,k,))

    def verify_indexing_consistency(self):
        for u in range(self.kd.nks):
            kpt_rank, myu = self.kd.who_has(u)
            self.assertEqual(self.kd.global_index(myu, kpt_rank), u)

        for kpt_rank in range(self.kd.comm.size):
            for myu in range(self.kd.get_count(kpt_rank)):
                u = self.kd.global_index(myu, kpt_rank)
                self.assertEqual(self.kd.who_has(u), (kpt_rank, myu))

    def verify_ranking_consistency(self):
        ranks = self.kd.get_ranks()

        for kpt_rank in range(self.kd.comm.size):
            my_indices = self.kd.get_indices(kpt_rank)
            matches = np.argwhere(ranks == kpt_rank).ravel()
            self.assertTrue((matches == my_indices).all())
            for myu in range(self.kd.get_count(kpt_rank)):
                u = self.kd.global_index(myu, kpt_rank)
                self.assertEqual(my_indices[myu], u)
Пример #27
0
nb = 6

a = Atoms('H', cell=(3 * np.eye(3)), pbc=True)

calc = GPAW(mode=PW(600), kpts=[[0, 0, 0], [0.25, 0, 0]])
a.calc = calc
a.get_potential_energy()
calc.diagonalize_full_hamiltonian(nbands=nb, expert=True)
calc.write('a.gpw', 'all')

pair = PairDensity('a.gpw', ecut=100)

# Check continuity eq.
for q_c in [[0, 0, 0], [1. / 4, 0, 0]]:
    ol = np.allclose(q_c, 0.0)
    qd = KPointDescriptor([q_c])
    pd = PWDescriptor(pair.ecut, calc.wfs.gd, complex, qd)
    kptpair = pair.get_kpoint_pair(pd, 0, [0, 0, 0], 0, nb, 0, nb)
    deps_nm = kptpair.get_transition_energies(np.arange(0, nb),
                                              np.arange(0, nb))

    n_nmG = pair.get_pair_density(pd,
                                  kptpair,
                                  np.arange(0, nb),
                                  np.arange(0, nb),
                                  optical_limit=ol)

    n_nmvG = pair.get_pair_momentum(pd, kptpair, np.arange(0, nb),
                                    np.arange(0, nb))

    if ol:
Пример #28
0
class PhononCalculator:
    """This class defines the interface for phonon calculations."""
    
    def __init__(self, calc, gamma=True, symmetry=False, e_ph=False,
                 communicator=serial_comm):
        """Inititialize class with a list of atoms.

        The atoms object must contain a converged ground-state calculation.

        The set of q-vectors in which the dynamical matrix will be calculated
        is determined from the ``symmetry`` kwarg. For now, only time-reversal
        symmetry is used to generate the irrecducible BZ.

        Add a little note on parallelization strategy here.

        Parameters
        ----------
        calc: str or Calculator
            Calculator containing a ground-state calculation.
        gamma: bool
            Gamma-point calculation with respect to the q-vector of the
            dynamical matrix. When ``False``, the Monkhorst-Pack grid from the
            ground-state calculation is used.
        symmetry: bool
            Use symmetries to reduce the q-vectors of the dynamcial matrix
            (None, False or True). The different options are equivalent to the
            options in a ground-state calculation.
        e_ph: bool
            Save the derivative of the effective potential.
        communicator: Communicator
            Communicator for parallelization over k-points and real-space
            domain.
            
        """

        # XXX
        assert symmetry in [None, False], "Spatial symmetries not allowed yet"

        self.symmetry = symmetry

        if isinstance(calc, str):
            self.calc = GPAW(calc, communicator=serial_comm, txt=None)
        else:
            self.calc = calc

        # Make sure localized functions are initialized
        self.calc.set_positions()
        # Note that this under some circumstances (e.g. when called twice)
        # allocates a new array for the P_ani coefficients !!

        # Store useful objects
        self.atoms = self.calc.get_atoms()
        # Get rid of ``calc`` attribute
        self.atoms.calc = None
 
        # Boundary conditions
        pbc_c = self.calc.atoms.get_pbc()

        if np.all(pbc_c == False):
            self.gamma = True
            self.dtype = float
            kpts = None
            # Multigrid Poisson solver
            poisson_solver = PoissonSolver()
        else:
            if gamma:
                self.gamma = True
                self.dtype = float
                kpts = None
            else:
                self.gamma = False
                self.dtype = complex
                # Get k-points from ground-state calculation
                kpts = self.calc.input_parameters.kpts
                
            # FFT Poisson solver
            poisson_solver = FFTPoissonSolver(dtype=self.dtype)

        # K-point descriptor for the q-vectors of the dynamical matrix
        # Note, no explicit parallelization here.
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.calc.wfs.setups,
                             usesymm=symmetry)
        self.kd.set_communicator(serial_comm)

        # Number of occupied bands
        nvalence = self.calc.wfs.nvalence
        nbands = nvalence / 2 + nvalence % 2
        assert nbands <= self.calc.wfs.bd.nbands

        # Extract other useful objects
        # Ground-state k-point descriptor - used for the k-points in the
        # ResponseCalculator
        # XXX replace communicators when ready to parallelize
        kd_gs = self.calc.wfs.kd
        gd = self.calc.density.gd
        kpt_u = self.calc.wfs.kpt_u
        setups = self.calc.wfs.setups
        dtype_gs = self.calc.wfs.dtype
        
        # WaveFunctions
        wfs = WaveFunctions(nbands, kpt_u, setups, kd_gs, gd, dtype=dtype_gs)

        # Linear response calculator
        self.response_calc = ResponseCalculator(self.calc, wfs,
                                                dtype=self.dtype)
        
        # Phonon perturbation
        self.perturbation = PhononPerturbation(self.calc, self.kd,
                                               poisson_solver,
                                               dtype=self.dtype)

        # Dynamical matrix
        self.dyn = DynamicalMatrix(self.atoms, self.kd, dtype=self.dtype)

        # Electron-phonon couplings
        if e_ph:
            self.e_ph = ElectronPhononCoupling(self.atoms, gd, self.kd,
                                               dtype=self.dtype)
        else:
            self.e_ph = None
                                               
        # Initialization flag
        self.initialized = False

        # Parallel communicator for parallelization over kpts and domain
        self.comm = communicator

    def initialize(self):
        """Initialize response calculator and perturbation."""

        # Get scaled atomic positions
        spos_ac = self.atoms.get_scaled_positions()

        self.perturbation.initialize(spos_ac)
        self.response_calc.initialize(spos_ac)

        self.initialized = True
        
    def __getstate__(self): 
        """Method used when pickling.

        Bound method attributes cannot be pickled and must therefore be deleted
        before an instance is dumped to file.

        """

        # Get state of object and take care of troublesome attributes
        state = dict(self.__dict__)
        state['kd'].__dict__['comm'] = serial_comm
        state.pop('calc')
        state.pop('perturbation')
        state.pop('response_calc')
        
        return state

    def run(self, qpts_q=None, clean=False, name=None, path=None):
        """Run calculation for atomic displacements and update matrix.

        Parameters
        ----------
        qpts: List
            List of q-points indices for which the dynamical matrix will be
            calculated (only temporary).

        """

        if not self.initialized:
            self.initialize()

        if self.gamma:
            qpts_q = [0]
        elif qpts_q is None:
            qpts_q = range(self.kd.nibzkpts)
        else:
            assert isinstance(qpts_q, list)

        # Update name and path attributes
        self.set_name_and_path(name=name, path=path)
        # Get string template for filenames
        filename_str = self.get_filename_string()

        # Delay the ranks belonging to the same k-point/domain decomposition
        # equally
        time.sleep(rank // self.comm.size)

        # XXX Make a single ground_state_contributions member function
        # Ground-state contributions to the force constants
        self.dyn.density_ground_state(self.calc)
        # self.dyn.wfs_ground_state(self.calc, self.response_calc)
        
        # Calculate linear response wrt q-vectors and displacements of atoms
        for q in qpts_q:
            
            if not self.gamma:
                self.perturbation.set_q(q)

            # First-order contributions to the force constants
            for a in self.dyn.indices:
                for v in [0, 1, 2]:

                    # Check if the calculation has already been done
                    filename = filename_str % (q, a, v)
                    # Wait for all sub-ranks to enter
                    self.comm.barrier()
                    
                    if os.path.isfile(os.path.join(self.path, filename)):
                        continue

                    if self.comm.rank == 0:
                        fd = open(os.path.join(self.path, filename), 'w')

                    # Wait for all sub-ranks here
                    self.comm.barrier()
                    
                    components = ['x', 'y', 'z']
                    symbols = self.atoms.get_chemical_symbols()
                    print "q-vector index: %i" % q
                    print "Atom index: %i" % a
                    print "Atomic symbol: %s" % symbols[a]
                    print "Component: %s" % components[v]

                    # Set atom and cartesian component of perturbation
                    self.perturbation.set_av(a, v)
                    # Calculate linear response
                    self.response_calc(self.perturbation)

                    # Calculate row of the matrix of force constants
                    self.dyn.calculate_row(self.perturbation,
                                           self.response_calc)

                    # Write force constants to file
                    if self.comm.rank == 0:
                        self.dyn.write(fd, q, a, v)
                        fd.close()
                        
                    # Store effective potential derivative
                    if self.e_ph is not None:
                        v1_eff_G = self.perturbation.v1_G + \
                                   self.response_calc.vHXC1_G
                        self.e_ph.v1_eff_qavG.append(v1_eff_G)

                    # Wait for the file-writing rank here
                    self.comm.barrier()

        # XXX
        # Check that all files are valid and collect in a single file
        # Remove the files
        if clean:
            self.clean()
            
    def get_atoms(self):
        """Return atoms."""

        return self.atoms
    
    def get_dynamical_matrix(self):
        """Return reference to ``dyn`` attribute."""
        
        return self.dyn

    def get_filename_string(self):
        """Return string template for force constant filenames."""

        name_str = (self.name + '.' + 'q_%%0%ii_' % len(str(self.kd.nibzkpts)) +
                    'a_%%0%ii_' % len(str(len(self.atoms))) + 'v_%i' + '.pckl')

        return name_str
    
    def set_atoms(self, atoms):
        """Set atoms to be included in the calculation.

        Parameters
        ----------
        atoms: list
            Can be either a list of strings, ints or ...
            
        """
        
        assert isinstance(atoms, list)
        
        if isinstance(atoms[0], str):
            assert np.all([isinstance(atom, str) for atom in atoms])
            sym_a = self.atoms.get_chemical_symbols()
            # List for atomic indices
            indices = []
            for type in atoms:
                indices.extend([a for a, atom in enumerate(sym_a)
                                if atom == type])
        else:
            assert np.all([isinstance(atom, int) for atom in atoms])
            indices = atoms
            
        self.dyn.set_indices(indices)

    def set_name_and_path(self, name=None, path=None):
        """Set name and path of the force constant files.

        name: str
            Base name for the files which the elements of the matrix of force
            constants will be written to.
        path: str
            Path specifying the directory where the files will be dumped.
            
        """

        if name is None:
            self.name = 'phonon.' + self.atoms.get_chemical_formula()
        else:
            self.name = name
        # self.name += '.nibzkpts_%i' % self.kd.nibzkpts
        
        if path is None:
            self.path = '.'
        else:
            self.path = path

        # Set corresponding attributes in the ``dyn`` attribute
        filename_str = self.get_filename_string()
        self.dyn.set_name_and_path(filename_str, self.path)
            
    def clean(self):
        """Delete generated files."""

        filename_str = self.get_filename_string()
        
        for q in range(self.kd.nibzkpts):
            for a in range(len(self.atoms)):
                for v in [0, 1, 2]:
                    filename = filename_str % (q, a, v)
                    if os.path.isfile(os.path.join(self.path, filename)):
                        os.remove(filename)
                        
    def band_structure(self, path_kc, modes=False, acoustic=True):
        """Calculate phonon dispersion along a path in the Brillouin zone.

        The dynamical matrix at arbitrary q-vectors is obtained by Fourier
        transforming the real-space matrix. In case of negative eigenvalues
        (squared frequency), the corresponding negative frequency is returned.

        Parameters
        ----------
        path_kc: ndarray
            List of k-point coordinates (in units of the reciprocal lattice
            vectors) specifying the path in the Brillouin zone for which the
            dynamical matrix will be calculated.
        modes: bool
            Returns both frequencies and modes (mass scaled) when True.
        acoustic: bool
            Restore the acoustic sum-rule in the calculated force constants.
            
        """

        for k_c in path_kc:
            assert np.all(np.asarray(k_c) <= 1.0), \
                   "Scaled coordinates must be given"

        # Assemble the dynanical matrix from calculated force constants
        self.dyn.assemble(acoustic=acoustic)
        # Get the dynamical matrix in real-space
        DR_lmn, R_clmn = self.dyn.real_space()

        # Reshape for the evaluation of the fourier sums
        shape = DR_lmn.shape
        DR_m = DR_lmn.reshape((-1,) + shape[-2:])
        R_cm = R_clmn.reshape((3, -1))

        # Lists for frequencies and modes along path
        omega_kn = []
        u_kn =  []
        # Number of atoms included
        N = len(self.dyn.get_indices())
        
        # Mass prefactor for the normal modes
        m_inv_av = self.dyn.get_mass_array()
        
        for q_c in path_kc:

            # Evaluate fourier transform 
            phase_m = np.exp(-2.j * pi * np.dot(q_c, R_cm))
            # Dynamical matrix in unit of Ha / Bohr**2 / amu
            D_q = np.sum(phase_m[:, np.newaxis, np.newaxis] * DR_m, axis=0)

            if modes:
                omega2_n, u_avn = la.eigh(D_q, UPLO='L')
                # Sort eigenmodes according to eigenvalues (see below) and
                # multiply with mass prefactor
                u_nav = u_avn[:, omega2_n.argsort()].T.copy() * m_inv_av
                # Multiply with mass prefactor
                u_kn.append(u_nav.reshape((3*N, -1, 3)))
            else:
                omega2_n = la.eigvalsh(D_q, UPLO='L')

            # Sort eigenvalues in increasing order
            omega2_n.sort()
            # Use dtype=complex to handle negative eigenvalues
            omega_n = np.sqrt(omega2_n.astype(complex))

            # Take care of imaginary frequencies
            if not np.all(omega2_n >= 0.):
                indices = np.where(omega2_n < 0)[0]
                print ("WARNING, %i imaginary frequencies at "
                       "q = (% 5.2f, % 5.2f, % 5.2f) ; (omega_q =% 5.3e*i)"
                       % (len(indices), q_c[0], q_c[1], q_c[2],
                          omega_n[indices][0].imag))
                
                omega_n[indices] = -1 * np.sqrt(np.abs(omega2_n[indices].real))

            omega_kn.append(omega_n.real)

        # Conversion factor from sqrt(Ha / Bohr**2 / amu) -> eV
        s = units.Hartree**0.5 * units._hbar * 1.e10 / \
            (units._e * units._amu)**(0.5) / units.Bohr
        # Convert to eV and Ang
        omega_kn = s * np.asarray(omega_kn)
        if modes:
            u_kn = np.asarray(u_kn) * units.Bohr
            return omega_kn, u_kn
        
        return omega_kn

    def write_modes(self, q_c, branches=0, kT=units.kB*300, repeat=(1, 1, 1),
                    nimages=30, acoustic=True):
        """Write mode to trajectory file.

        The classical equipartioning theorem states that each normal mode has
        an average energy::
        
            <E> = 1/2 * k_B * T = 1/2 * omega^2 * Q^2

                =>

              Q = sqrt(k_B*T) / omega

        at temperature T. Here, Q denotes the normal coordinate of the mode.
        
        Parameters
        ----------
        q_c: ndarray
            q-vector of the modes.
        branches: int or list
            Branch index of calculated modes.
        kT: float
            Temperature in units of eV. Determines the amplitude of the atomic
            displacements in the modes.
        repeat: tuple
            Repeat atoms (l, m, n) times in the directions of the lattice
            vectors. Displacements of atoms in repeated cells carry a Bloch
            phase factor given by the q-vector and the cell lattice vector R_m.
        nimages: int
            Number of images in an oscillation.
            
        """

        if isinstance(branches, int):
            branch_n = [branches]
        else:
            branch_n = list(branches)

        # Calculate modes
        omega_n, u_n = self.band_structure([q_c], modes=True, acoustic=acoustic)
        
        # Repeat atoms
        atoms = self.atoms * repeat
        pos_mav = atoms.positions.copy()
        # Total number of unit cells
        M = np.prod(repeat)
            
        # Corresponding lattice vectors R_m
        R_cm = np.indices(repeat[::-1]).reshape(3, -1)[::-1]
        # Bloch phase
        phase_m = np.exp(2.j * pi * np.dot(q_c, R_cm))
        phase_ma = phase_m.repeat(len(self.atoms))

     
        for n in branch_n:

            omega = omega_n[0, n]
            u_av = u_n[0, n] # .reshape((-1, 3))
            # Mean displacement at high T ?
            u_av *= sqrt(kT / abs(omega))
            
            mode_av = np.zeros((len(self.atoms), 3), dtype=self.dtype)
            indices = self.dyn.get_indices()
            mode_av[indices] = u_av
            mode_mav = (np.vstack([mode_av]*M) * phase_ma[:, np.newaxis]).real

            traj = PickleTrajectory('%s.mode.%d.traj' % (self.name, n), 'w')

            for x in np.linspace(0, 2*pi, nimages, endpoint=False):
                # XXX Is it correct to take out the sine component here ?
                atoms.set_positions(pos_mav + sin(x) * mode_mav)
                traj.write(atoms)
                
            traj.close()
Пример #29
0
    def initialize(self, density, hamiltonian, wfs, occupations):
        self.xc.initialize(density, hamiltonian, wfs, occupations)
        self.nspins = wfs.nspins
        self.setups = wfs.setups
        self.density = density
        self.kpt_u = wfs.kpt_u
        
        self.gd = density.gd
        self.kd = wfs.kd
        self.bd = wfs.bd

        N_c = self.gd.N_c
        N = self.gd.N_c.prod()
        vol = self.gd.dv * N
        
        if self.alpha is None:
            self.alpha = 6 * vol**(2 / 3.0) / pi**2
            
        self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) *
                      self.kd.nbzkpts)
        ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max()

        if self.kd.N_c is None:
            self.bzk_kc = np.zeros((1, 3))
            dfghdfgh
        else:
            n = self.kd.N_c * 2 - 1
            bzk_kc = np.indices(n).transpose((1, 2, 3, 0))
            bzk_kc.shape = (-1, 3)
            bzk_kc -= self.kd.N_c - 1
            self.bzk_kc = bzk_kc.astype(float) / self.kd.N_c
        
        self.pwd = PWDescriptor(ecut, self.gd, self.bzk_kc)

        n = 0
        for k_c, Gpk2_G in zip(self.bzk_kc[:], self.pwd.G2_qG):
            if (k_c > -0.5).all() and (k_c <= 0.5).all(): #XXX???
                if k_c.any():
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G),
                                         Gpk2_G**-1)
                else:
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G[1:]),
                                         Gpk2_G[1:]**-1)
                n += 1

        assert n == self.kd.N_c.prod()
        
        self.ghat = LFC(self.gd,
                        [setup.ghat_l for setup in density.setups],
                        dtype=complex
                        )
        self.ghat.set_k_points(self.bzk_kc)
        
        self.fullkd = KPointDescriptor(self.kd.bzk_kc, nspins=1)
        class S:
            id_a = []
            def set_symmetry(self, s): pass
            
        self.fullkd.set_symmetry(Atoms(pbc=True), S(), False)
        self.fullkd.set_communicator(world)
        self.pt = LFC(self.gd, [setup.pt_j for setup in density.setups],
                      dtype=complex)
        self.pt.set_k_points(self.fullkd.ibzk_kc)

        self.interpolator = density.interpolator
Пример #30
0
class UTGaussianWavefunctionSetup(UTDomainParallelSetup):
    __doc__ = UTDomainParallelSetup.__doc__ + """
    The pseudo wavefunctions are moving gaussians centered around each atom."""

    allocated = False
    dtype = None

    # Default arguments for scaled Gaussian wave
    _sigma0 = 2.0 #0.75
    _k0_c = 2*np.pi*np.array([1/5., 1/3., 0.])

    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Create randomized atoms
        self.atoms = create_random_atoms(self.gd, 5) # also tested: 10xNH3/BDA

        # XXX DEBUG START
        if False:
            from ase import view
            view(self.atoms*(1+2*self.gd.pbc_c))
        # XXX DEBUG END

        # Do we agree on the atomic positions?
        pos_ac = self.atoms.get_positions()
        pos_rac = np.empty((world.size,)+pos_ac.shape, pos_ac.dtype)
        world.all_gather(pos_ac, pos_rac)
        if (pos_rac-pos_rac[world.rank,...][np.newaxis,...]).any():
            raise RuntimeError('Discrepancy in atomic positions detected.')

        # Create setups for atoms
        self.Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(self.Z_a, p.setups, p.basis,
                             p.lmax, xc)

        # K-point descriptor
        bzk_kc = np.array([[0, 0, 0]], dtype=float)
        self.kd = KPointDescriptor(bzk_kc, 1)
        self.kd.set_symmetry(self.atoms, self.setups)
        self.kd.set_communicator(self.kpt_comm)

        # Create gamma-point dummy wavefunctions
        self.wfs = FDWFS(self.gd, self.bd, self.kd, self.setups,
                         self.block_comm, self.dtype)

        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.wfs.set_positions(spos_ac)
        self.pt = self.wfs.pt # XXX shortcut

        ## Also create pseudo partial waveves
        #from gpaw.lfc import LFC
        #self.phit = LFC(self.gd, [setup.phit_j for setup in self.setups], \
        #                self.kpt_comm, dtype=self.dtype)
        #self.phit.set_positions(spos_ac)

        self.r_cG = None
        self.buf_G = None
        self.psit_nG = None

        self.allocate()

    def tearDown(self):
        UTDomainParallelSetup.tearDown(self)
        del self.r_cG, self.buf_G, self.psit_nG
        del self.pt, self.setups, self.atoms
        self.allocated = False

    def allocate(self):
        self.r_cG = self.gd.get_grid_point_coordinates()
        cell_cv = self.atoms.get_cell() / Bohr
        assert np.abs(cell_cv-self.gd.cell_cv).max() < 1e-9
        center_c = 0.5*cell_cv.diagonal()

        self.buf_G = self.gd.empty(dtype=self.dtype)
        self.psit_nG = self.gd.empty(self.bd.mynbands, dtype=self.dtype)

        for myn,psit_G in enumerate(self.psit_nG):
            n = self.bd.global_index(myn)
            psit_G[:] = self.get_scaled_gaussian_wave(center_c, scale=10+2j*n)

            k_c = 2*np.pi*np.array([1/2., -1/7., 0.])
            for pos_c in self.atoms.get_positions() / Bohr:
                sigma = self._sigma0/(1+np.sum(pos_c**2))**0.5
                psit_G += self.get_scaled_gaussian_wave(pos_c, sigma, k_c, n+5j)

        self.allocated = True

    def get_scaled_gaussian_wave(self, pos_c, sigma=None, k_c=None, scale=None):
        if sigma is None:
            sigma = self._sigma0

        if k_c is None:
            k_c = self._k0_c

        if scale is None:
            A = None
        else:
            # 4*pi*int(exp(-r^2/(2*w^2))^2*r^2, r=0...infinity)= w^3*pi^(3/2)
            # = scale/A^2 -> A = scale*(sqrt(Pi)*w)^(-3/2) hence int -> scale^2
            A = scale/(sigma*(np.pi)**0.5)**1.5

        return gaussian_wave(self.r_cG, pos_c, sigma, k_c, A, self.dtype, self.buf_G)

    def check_and_plot(self, P_ani, P0_ani, digits, keywords=''):
        # Collapse into viewable matrices
        P_In = self.wfs.collect_projections(P_ani)
        P0_In = self.wfs.collect_projections(P0_ani)

        # Construct fingerprint of input matrices for comparison
        fingerprint = np.array([md5_array(P_In, numeric=True),
                                md5_array(P0_In, numeric=True)])

        # Compare fingerprints across all processors
        fingerprints = np.empty((world.size, 2), np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        # If assertion fails, catch temporarily while plotting, then re-raise
        try:
            self.assertAlmostEqual(np.abs(P_In-P0_In).max(), 0, digits)
        except AssertionError:
            if world.rank == 0 and mpl is not None:
                from matplotlib.figure import Figure
                fig = Figure()
                ax = fig.add_axes([0.0, 0.1, 1.0, 0.83])
                ax.set_title(self.__class__.__name__)
                im = ax.imshow(np.abs(P_In-P0_In), interpolation='nearest')
                fig.colorbar(im)
                fig.text(0.5, 0.05, 'Keywords: ' + keywords, \
                    horizontalalignment='center', verticalalignment='top')

                from matplotlib.backends.backend_agg import FigureCanvasAgg
                img = 'ut_invops_%s_%s.png' % (self.__class__.__name__, \
                    '_'.join(keywords.split(',')))
                FigureCanvasAgg(fig).print_figure(img.lower(), dpi=90)
            raise

    # =================================

    def test_projection_linearity(self):
        kpt = self.wfs.kpt_u[0]
        Q_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(self.psit_nG, Q_ani, q=kpt.q)

        for Q_ni in Q_ani.values():
            self.assertTrue(Q_ni.dtype == self.dtype)

        P0_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        self.pt.add(self.psit_nG, Q_ani, q=kpt.q)
        self.pt.integrate(self.psit_nG, P0_ani, q=kpt.q)

        #rank_a = self.gd.get_ranks_from_positions(spos_ac)
        #my_atom_indices = np.argwhere(self.gd.comm.rank == rank_a).ravel()

        #                                                ~ a   ~ a'
        #TODO XXX should fix PairOverlap-ish stuff for < p  | phi  > overlaps
        #                                                 i      i'

        #spos_ac = self.pt.spos_ac # NewLFC doesn't have this
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        gpo = GridPairOverlap(self.gd, self.setups)
        B_aa = gpo.calculate_overlaps(spos_ac, self.pt)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        P_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        for a1 in range(len(self.atoms)):
            if a1 in P_ani.keys():
                P_ni = P_ani[a1]
            else:
                # Atom a1 is not in domain so allocate a temporary buffer
                P_ni = np.zeros((self.bd.mynbands,self.setups[a1].ni,),
                                 dtype=self.dtype)
            for a2, Q_ni in Q_ani.items():
                # B_aa are the projector overlaps across atomic pairs
                B_ii = gpo.extract_atomic_pair_matrix(B_aa, a1, a2)
                P_ni += np.dot(Q_ni, B_ii.T) #sum over a2 and last i in B_ii
            self.gd.comm.sum(P_ni)

        self.check_and_plot(P_ani, P0_ani, 8, 'projection,linearity')

    def test_extrapolate_overlap(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,overlap')

    def test_extrapolate_inverse(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,inverse')

    def test_overlap_inverse_after(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply_inverse(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,after')

    def test_overlap_inverse_before(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,before')
Пример #31
0
    def bloch_matrix(self,
                     kpts,
                     qpts,
                     c_kn,
                     u_ql,
                     omega_ql=None,
                     kpts_from=None):
        """Calculate el-ph coupling in the Bloch basis for the electrons.

        This function calculates the electron-phonon coupling between the
        specified Bloch states, i.e.::

                      ______ 
            mnl      / hbar               ^
           g    =   /-------  < m k + q | e  . grad V  | n k >
            kq    \/ 2 M w                 ql        q
                          ql

        In case the ``omega_ql`` keyword argument is not given, the bare matrix
        element (in units of eV / Ang) without the sqrt prefactor is returned. 
        
        Parameters
        ----------
        kpts: ndarray or tuple.
            k-vectors of the Bloch states. When a tuple of integers is given, a
            Monkhorst-Pack grid with the specified number of k-points along the
            directions of the reciprocal lattice vectors is generated.
        qpts: ndarray or tuple.
            q-vectors of the phonons.
        c_kn: ndarray
            Expansion coefficients for the Bloch states. The ordering must be
            the same as in the ``kpts`` argument.
        u_ql: ndarray
            Mass-scaled polarization vectors (in units of 1 / sqrt(amu)) of the
            phonons. Again, the ordering must be the same as in the
            corresponding ``qpts`` argument.
        omega_ql: ndarray
            Vibrational frequencies in eV. 
        kpts_from: list of ints or int
            Calculate only the matrix element for the k-vectors specified by
            their index in the ``kpts`` argument (default: all).

        In short, phonon frequencies and mode vectors must be given in ase units.

        """

        assert self.g_xNNMM is not None, "Load supercell matrix."
        assert len(c_kn.shape) == 3
        assert len(u_ql.shape) == 4
        if omega_ql is not None:
            assert np.all(u_ql.shape[:2] == omega_ql.shape[:2])

        # Translate k-points into 1. BZ (required by ``find_k_plus_q``` member
        # function of the ```KPointDescriptor``).
        if isinstance(kpts, np.ndarray):
            assert kpts.shape[1] == 3, "kpts_kc array must be given"
            # XXX This does not seem to cause problems!
            kpts -= kpts.round()

        # Use the KPointDescriptor to keep track of the k and q-vectors
        kd_kpts = KPointDescriptor(kpts)
        kd_qpts = KPointDescriptor(qpts)
        # Check that number of k- and q-points agree with the number of Bloch
        # functions and polarization vectors
        assert kd_kpts.nbzkpts == len(c_kn)
        assert kd_qpts.nbzkpts == len(u_ql)

        # Include all k-point per default
        if kpts_from is None:
            kpts_kc = kd_kpts.bzk_kc
            kpts_k = range(kd_kpts.nbzkpts)
        else:
            kpts_kc = kd_kpts.bzk_kc[kpts_from]
            if isinstance(kpts_from, int):
                kpts_k = list([kpts_from])
            else:
                kpts_k = list(kpts_from)

        # Supercell matrix (real matrix in Hartree / Bohr)
        g_xNNMM = self.g_xNNMM

        # Number of phonon modes and electronic bands
        nmodes = u_ql.shape[1]
        nbands = c_kn.shape[1]
        # Number of atoms displacements and basis functions
        ndisp = np.prod(u_ql.shape[2:])
        assert ndisp == (3 * len(self.indices))
        nao = c_kn.shape[2]
        assert ndisp == g_xNNMM.shape[0]
        assert nao == g_xNNMM.shape[-1]

        # Lattice vectors
        R_cN = self.lattice_vectors()
        # Number of unit cell in supercell
        N = np.prod(self.N_c)

        # Allocate array for couplings
        g_qklnn = np.zeros(
            (kd_qpts.nbzkpts, len(kpts_kc), nmodes, nbands, nbands),
            dtype=complex)

        self.timer.write_now("Calculating coupling matrix elements")
        for q, q_c in enumerate(kd_qpts.bzk_kc):

            # Find indices of k+q for the k-points
            kplusq_k = kd_kpts.find_k_plus_q(q_c, kpts_k=kpts_k)

            # Here, ``i`` is counting from 0 and ``k`` is the global index of
            # the k-point
            for i, (k, k_c) in enumerate(zip(kpts_k, kpts_kc)):

                # Check the wave vectors (adapted to the ``KPointDescriptor`` class)
                kplusq_c = k_c + q_c
                kplusq_c -= kplusq_c.round()
                assert np.allclose(kplusq_c, kd_kpts.bzk_kc[kplusq_k[i]] ), \
                       (i, k, k_c, q_c, kd_kpts.bzk_kc[kplusq_k[i]])

                # Allocate array
                g_xMM = np.zeros((ndisp, nao, nao), dtype=complex)

                # Multiply phase factors
                for m in range(N):
                    for n in range(N):
                        Rm_c = R_cN[:, m]
                        Rn_c = R_cN[:, n]
                        phase = np.exp(
                            2.j * pi *
                            (np.dot(k_c, Rm_c - Rn_c) + np.dot(q_c, Rm_c)))
                        # Sum contributions from different cells
                        g_xMM += g_xNNMM[:, m, n, :, :] * phase

                # LCAO coefficient for Bloch states
                ck_nM = c_kn[k]
                ckplusq_nM = c_kn[kplusq_k[i]]
                # Mass scaled polarization vectors
                u_lx = u_ql[q].reshape(nmodes, 3 * len(self.atoms))

                g_nxn = np.dot(ckplusq_nM.conj(), np.dot(g_xMM, ck_nM.T))
                g_lnn = np.dot(u_lx, g_nxn)

                # Insert value
                g_qklnn[q, i] = g_lnn

                # XXX Temp
                if np.all(q_c == 0.0):
                    # These should be real
                    print(g_qklnn[q].imag.min(), g_qklnn[q].imag.max())

        self.timer.write_now(
            "Finished calculation of coupling matrix elements")

        # Return the bare matrix element if frequencies are not given
        if omega_ql is None:
            # Convert to eV / Ang
            g_qklnn *= units.Hartree / units.Bohr
        else:
            # Multiply prefactor sqrt(hbar / 2 * M * omega) in units of Bohr
            amu = units._amu  # atomic mass unit
            me = units._me  # electron mass
            g_qklnn /= np.sqrt(2 * amu / me / units.Hartree * \
                               omega_ql[:, np.newaxis, :, np.newaxis, np.newaxis])
            # Convert to eV
            g_qklnn *= units.Hartree

        # Return couplings in eV (or eV / Ang)
        return g_qklnn
Пример #32
0
class Phonons(phonons.Phonons):
    """DFPT version of the ``Phonons`` class from ase.

    This class recycle the functionality from the ASE class.

    """

    def __init__(self, atoms, kpts, symmetry):
        """Initialize base class and attributes.

        Parameters
        ----------
        atoms: Atoms
            ASE atoms.
        kpts: tuple or list of tuples
            Shape of Monkhorst-Pack grid or list of k-points used in the dfpt
            calculation.
        symmetry: bool or None
            Symmetry parameter used in dfpt calculation.
            
        """

        # Init base class with ``Atoms`` object
        phonons.Phonons.__init__(atoms)

        # Create k-point descriptor
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.calc.wfs.setups, symmetry)

        # Overwrite ``N_c`` attribute
        self.N_c = tuple(self.kd.N_c)

        # Index of the gamma point -- for the acoustic sum-rule
        self.gamma_index = None
        if self.kd.gamma:
            self.gamma_index = 0
            self.dtype == float
        else:
            self.dtype == comples
            for k, k_c in enumerate(self.kd.ibzk_kc):
                if np.all(k_c == 0.):
                    self.gamma_index = k

        assert self.gamma_index is not None
        
    def run(self):
        """Overwrite base class member function."""

        raise RuntimeError, "Use only this class for post-processing"
    
    def read(self):
        """Read force constants from files."""

        # Data structure for force constants
        self.C_qaavv = [dict([(a, dict([(a_, np.zeros((3, 3), dtype=dtype))
                                        for a_ in self.indices]))
                              for a in self.indices])
                        for q in range(self.kd.nibzkpts)]
        
        assert self.name is not None
        assert self.path is not None
        
        for q in range(self.kd.nibzkpts):
            for a in self.indices:
                for v in [0, 1, 2]:
                    filename = self.name % (q, a, v)
                    try:
                        fd = open(os.path.join(self.path, filename))
                    except EOFError:
                        print ("Redo file %s "
                               % os.path.join(self.path, filename))
                    C_qav_a = pickle.load(fd)
                    fd.close()
                    for a_ in self.indices:
                        self.C_qaavv[q][a][a_][v] = C_qav_a[a_]

    def assemble(self, acoustic=True):
        """Assemble dynamical matrix from the force constants attribute.

        The elements of the dynamical matrix are given by::

            D_ij(q) = 1/(M_i + M_j) * C_ij(q) ,
                      
        where i and j are collective atomic and cartesian indices.

        During the assembly, various symmetries of the dynamical matrix are
        enforced::

            1) Hermiticity
            2) Acoustic sum-rule
            3) D(q) = D*(-q)

        Parameters
        ----------
        acoustic: bool
            When True, the diagonal of the matrix of force constants is
            corrected to ensure that the acoustic sum-rule is fulfilled.
            
        """

        # Read force constants from files
        self.read()

        # Number of atoms included
        N = len(self.indices)
        
        # Assemble matrix of force constants
        self.C_q = []
        for q, C_aavv in enumerate(self.C_qaavv):

            C_avav = np.zeros((3*N, 3*N), dtype=self.dtype)
    
            for i, a in enumerate(self.indices):
                for j, a_ in enumerate(self.indices):
                    C_avav[3*i : 3*i + 3, 3*j : 3*j + 3] += C_aavv[a][a_]

            self.C_q.append(C_avav)

        # XXX Figure out in which order the corrections should be done
        # Make C(q) Hermitian
        for C in self.C_q:
            C *= 0.5
            C += C.T.conj()

        # Get matrix of force constants in the Gamma-point (is real!)
        C_gamma = self.C_q[self.gamma_index].real
        # Make Gamma-component real
        self.C_q[self.gamma_index] = C_gamma.copy()
            
        # Apply acoustic sum-rule if requested
        if acoustic:
            # Correct atomic diagonal for each q-vector
            for C in self.C_q:
                for a in range(N):
                    for a_ in range(N):
                        C[3*a : 3*a + 3, 3*a : 3*a + 3] -= \
                              C_gamma[3*a: 3*a+3, 3*a_: 3*a_+3]

            # Check sum-rule for Gamma-component in debug mode
            if debug:
                C = self.C_q[self.gamma_index]
                assert np.all(np.sum(C.reshape((3*N, N, 3)), axis=1) < 1e-15)

        
        # Move this bit to an ``unfold`` member function
        # XXX Time-reversal symmetry
        C_q = np.asarray(self.C_q)
        if self.kd.nibzkpts != self.kd.nbzkpts:
            self.D_k = np.concatenate((C_q[:0:-1].conjugate(), C_q))
        else:
            self.D_k = 0.5 * C_q
            self.D_k += self.D_k[::-1].conjugate()
            
        # Mass prefactor for the dynamical matrix
        m = self.atoms.get_masses()
        self.m_inv_av = np.repeat(m[self.indices]**-0.5, 3)
        M_avav = self.m_inv_av[:, np.newaxis] * self.m_inv_av

        for C in self.D_k:
            C *= M_avav

        self.assembled = True
       
    def real_space(self):
        """Fourier transform the dynamical matrix to real-space."""

        if not self.assembled:
            self.assemble()

        # Shape of q-point grid
        N_c = self.N_c

        # Reshape before Fourier transforming
        shape = self.D_k.shape
        Dq_lmn = self.D_k.reshape(N_c + shape[1:])
        DR_lmn = fft.ifftn(fft.ifftshift(Dq_lmn, axes=(0, 1, 2)), axes=(0, 1, 2))

        if debug:
            # Check that D_R is real enough
            assert np.all(DR_lmn.imag < 1e-8)
            
        DR_lmn = DR_lmn.real

        # Corresponding R_m vectors in units of the basis vectors
        R_cm = np.indices(N_c).reshape(3, -1)
        N1_c = np.array(N_c)[:, np.newaxis]        
        R_cm += N1_c // 2
        R_cm %= N1_c
        R_cm -= N1_c // 2
        R_clmn = R_cm.reshape((3,) + N_c)

        return DR_lmn, R_clmn
    
    def fourier_interpolate(self, N_c):
        """Fourier interpolate dynamical matrix onto a finer q-vector grid."""

        # Move this member function to the ASE class
        raise NotImplementedError    
Пример #33
0
class UTDomainParallelSetup(TestCase):
    """
    Setup a simple domain parallel calculation."""

    # Number of bands
    nbands = 12

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    # Type of boundary conditions employed (determines nibzkpts and dtype)
    boundaries = None
    nibzkpts = None
    dtype = None

    timer = nulltimer

    def setUp(self):
        for virtvar in ['boundaries']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        res, N_c = shapeopt(100, self.G**3, 3, 0.2)
        #N_c = 4*np.round(np.array(N_c)/4) # makes domain decomposition easier
        cell_cv = self.h * np.diag(N_c)
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]

        # Create randomized gas-like atomic configuration on interim grid
        tmpgd = GridDescriptor(N_c, cell_cv, pbc_c)
        self.atoms = create_random_atoms(tmpgd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        assert 1 == self.nspins
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil((10/Bohr)/np.sum(cell_cv**2,axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c * pbc_c + 1 - pbc_c)
        self.bzk_kc = kpts2ndarray(kpts_c)

        # Set up k-point descriptor
        self.kd = KPointDescriptor(self.bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)

        # Set the dtype
        if self.kd.gamma:
            self.dtype = float
        else:
            self.dtype = complex
            
        # Create communicators
        parsize, parsize_bands = self.get_parsizes()
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(parsize,
            parsize_bands, self.nspins, self.kd.nibzkpts)

        self.kd.set_communicator(kpt_comm)
        
        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)

        # Set up kpoint/spin descriptor (to be removed):
        self.kd_old = KPointDescriptorOld(self.nspins, self.kd.nibzkpts,
                                          kpt_comm, self.kd.gamma, self.dtype)

       
    def tearDown(self):
        del self.atoms, self.bd, self.gd, self.kd, self.kd_old

    def get_parsizes(self):
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize, parsize_bands

        # D: number of domains
        # B: number of band groups
        if parsize is None:
            D = min(world.size, 2)
        else:
            D = parsize
        assert world.size % D == 0
        if parsize_bands is None:
            B = world.size // D
        else:
            B = parsize_bands
        return D, B

    # =================================

    def verify_comm_sizes(self):
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd_old.comm]])
        self._parinfo =  '%d world, %d band, %d domain, %d kpt' % comm_sizes
        self.assertEqual(self.nbands % self.bd.comm.size, 0)
        self.assertEqual((self.nspins * self.kd.nibzkpts) % self.kd_old.comm.size, 0)
Пример #34
0
def create_kpoint_descriptor(bzkpts_kc, nspins, atoms, symmetry, comm):
    kd = KPointDescriptor(bzkpts_kc, nspins)
    # self.timer.start('Set symmetry')
    kd.set_symmetry(atoms, symmetry, comm=comm)
    # self.timer.stop('Set symmetry')
    return kd
Пример #35
0
    def __init__(self, calc, filename='gw',
                 kpts=None, bands=None, nbands=None, ppa=False,
                 wstc=False,
                 ecut=150.0, eta=0.1, E0=1.0 * Hartree,
                 domega0=0.025, omega2=10.0,
                 nblocks=1, savew=False,
                 world=mpi.world):

        if world.rank != 0:
            txt = devnull
        else:
            txt = open(filename + '.txt', 'w')

        p = functools.partial(print, file=txt)
        p('  ___  _ _ _ ')
        p(' |   || | | |')
        p(' | | || | | |')
        p(' |__ ||_____|')
        p(' |___|')
        p()

        PairDensity.__init__(self, calc, ecut, world=world, nblocks=nblocks,
                             txt=txt)

        self.filename = filename
        self.savew = savew
        
        ecut /= Hartree
        
        self.ppa = ppa
        self.wstc = wstc
        self.eta = eta / Hartree
        self.E0 = E0 / Hartree
        self.domega0 = domega0 / Hartree
        self.omega2 = omega2 / Hartree

        self.kpts = select_kpts(kpts, self.calc)
                
        if bands is None:
            bands = [0, self.nocc2]
            
        self.bands = bands

        b1, b2 = bands
        self.shape = shape = (self.calc.wfs.nspins, len(self.kpts), b2 - b1)
        self.eps_sin = np.empty(shape)     # KS-eigenvalues
        self.f_sin = np.empty(shape)       # occupation numbers
        self.sigma_sin = np.zeros(shape)   # self-energies
        self.dsigma_sin = np.zeros(shape)  # derivatives of self-energies
        self.vxc_sin = None                # KS XC-contributions
        self.exx_sin = None                # exact exchange contributions
        self.Z_sin = None                  # renormalization factors
        
        if nbands is None:
            nbands = int(self.vol * ecut**1.5 * 2**0.5 / 3 / pi**2)
        self.nbands = nbands

        p()
        p('Quasi particle states:')
        if kpts is None:
            p('All k-points in IBZ')
        else:
            kptstxt = ', '.join(['{0:d}'.format(k) for k in self.kpts])
            p('k-points (IBZ indices): [' + kptstxt + ']')
        p('Band range: ({0:d}, {1:d})'.format(b1, b2))
        p()
        p('Computational parameters:')
        p('Plane wave cut-off: {0:g} eV'.format(self.ecut * Hartree))
        p('Number of bands: {0:d}'.format(self.nbands))
        p('Broadening: {0:g} eV'.format(self.eta * Hartree))

        kd = self.calc.wfs.kd

        self.mysKn1n2 = None  # my (s, K, n1, n2) indices
        self.distribute_k_points_and_bands(b1, b2, kd.ibz2bz_k[self.kpts])
        
        # Find q-vectors and weights in the IBZ:
        assert -1 not in kd.bz2bz_ks
        offset_c = 0.5 * ((kd.N_c + 1) % 2) / kd.N_c
        bzq_qc = monkhorst_pack(kd.N_c) + offset_c
        self.qd = KPointDescriptor(bzq_qc)
        self.qd.set_symmetry(self.calc.atoms, kd.symmetry)
        
        assert self.calc.wfs.nspins == 1
Пример #36
0
class G0W0(PairDensity):
    """This class defines the G0W0 calculator. The G0W0 calculator is used
    is used to calculate the quasi particle energies through the G0W0
    approximation for a number of states.

    Note: So far the G0W0 calculation only works for spin-paired systems.

    Parameters:
       calc: str or PAW object
          GPAW calculator object or filename of saved calculator object.
       filename: str
          Base filename of output files.
       kpts: list
          List of indices of the IBZ k-points to calculate the quasi particle
          energies for.
       bands: tuple
          Range of band indices, like (n1, n2+1), to calculate the quasi
          particle energies for. Note that the second band index is not
          included.
       ecut: float
          Plane wave cut-off energy in eV.
       nbands: int
          Number of bands to use in the calculation. If :None: the number will
          be determined from :ecut: to yield a number close to the number of
          plane waves used.
       ppa: bool
          Sets whether the Godby-Needs plasmon-pole approximation for the
          dielectric function should be used.
       E0: float
          Energy (in eV) used for fitting in the plasmon-pole approximation.
       domega0: float
          Minimum frequency step (in eV) used in the generation of the non-
          linear frequency grid.
       omega2: float
          Control parameter for the non-linear frequency grid, equal to the
          frequency where the grid spacing has doubled in size.
       wstc: bool
          Sets whether a Wigner-Seitz truncation should be used for the
          Coloumb potential.
    """
    def __init__(self, calc, filename='gw',
                 kpts=None, bands=None, nbands=None, ppa=False,
                 wstc=False,
                 ecut=150.0, eta=0.1, E0=1.0 * Hartree,
                 domega0=0.025, omega2=10.0,
                 nblocks=1, savew=False,
                 world=mpi.world):

        if world.rank != 0:
            txt = devnull
        else:
            txt = open(filename + '.txt', 'w')

        p = functools.partial(print, file=txt)
        p('  ___  _ _ _ ')
        p(' |   || | | |')
        p(' | | || | | |')
        p(' |__ ||_____|')
        p(' |___|')
        p()

        PairDensity.__init__(self, calc, ecut, world=world, nblocks=nblocks,
                             txt=txt)

        self.filename = filename
        self.savew = savew
        
        ecut /= Hartree
        
        self.ppa = ppa
        self.wstc = wstc
        self.eta = eta / Hartree
        self.E0 = E0 / Hartree
        self.domega0 = domega0 / Hartree
        self.omega2 = omega2 / Hartree

        self.kpts = select_kpts(kpts, self.calc)
                
        if bands is None:
            bands = [0, self.nocc2]
            
        self.bands = bands

        b1, b2 = bands
        self.shape = shape = (self.calc.wfs.nspins, len(self.kpts), b2 - b1)
        self.eps_sin = np.empty(shape)     # KS-eigenvalues
        self.f_sin = np.empty(shape)       # occupation numbers
        self.sigma_sin = np.zeros(shape)   # self-energies
        self.dsigma_sin = np.zeros(shape)  # derivatives of self-energies
        self.vxc_sin = None                # KS XC-contributions
        self.exx_sin = None                # exact exchange contributions
        self.Z_sin = None                  # renormalization factors
        
        if nbands is None:
            nbands = int(self.vol * ecut**1.5 * 2**0.5 / 3 / pi**2)
        self.nbands = nbands

        p()
        p('Quasi particle states:')
        if kpts is None:
            p('All k-points in IBZ')
        else:
            kptstxt = ', '.join(['{0:d}'.format(k) for k in self.kpts])
            p('k-points (IBZ indices): [' + kptstxt + ']')
        p('Band range: ({0:d}, {1:d})'.format(b1, b2))
        p()
        p('Computational parameters:')
        p('Plane wave cut-off: {0:g} eV'.format(self.ecut * Hartree))
        p('Number of bands: {0:d}'.format(self.nbands))
        p('Broadening: {0:g} eV'.format(self.eta * Hartree))

        kd = self.calc.wfs.kd

        self.mysKn1n2 = None  # my (s, K, n1, n2) indices
        self.distribute_k_points_and_bands(b1, b2, kd.ibz2bz_k[self.kpts])
        
        # Find q-vectors and weights in the IBZ:
        assert -1 not in kd.bz2bz_ks
        offset_c = 0.5 * ((kd.N_c + 1) % 2) / kd.N_c
        bzq_qc = monkhorst_pack(kd.N_c) + offset_c
        self.qd = KPointDescriptor(bzq_qc)
        self.qd.set_symmetry(self.calc.atoms, kd.symmetry)
        
        assert self.calc.wfs.nspins == 1
        
    @timer('G0W0')
    def calculate(self, ecuts=None):
        """Starts the G0W0 calculation. Returns a dict with the results with
        the following key/value pairs:

        f: (s, k, n) ndarray
           Occupation numbers
        eps: (s, k, n) ndarray
           Kohn-Sham eigenvalues in eV
        vxc: (s, k, n) ndarray
           Exchange-correlation contributions in eV
        exx: (s, k, n) ndarray
           Exact exchange contributions in eV
        sigma: (s, k, n) ndarray
           Self-energy contributions in eV
        Z: (s, k, n) ndarray
           Renormalization factors
        qp: (s, k, n) ndarray
           Quasi particle energies in eV
        """
        kd = self.calc.wfs.kd

        self.calculate_ks_xc_contribution()
        self.calculate_exact_exchange()

        # Reset calculation
        self.sigma_sin = np.zeros(self.shape)   # self-energies
        self.dsigma_sin = np.zeros(self.shape)  # derivatives of self-energies

        # Get KS eigenvalues and occupation numbers:
        b1, b2 = self.bands
        for i, k in enumerate(self.kpts):
            kpt = self.calc.wfs.kpt_u[k]
            self.eps_sin[0, i] = kpt.eps_n[b1:b2]
            self.f_sin[0, i] = kpt.f_n[b1:b2] / kpt.weight

        # My part of the states we want to calculate QP-energies for:
        mykpts = [self.get_k_point(s, K, n1, n2)
                  for s, K, n1, n2 in self.mysKn1n2]
        
        # Loop over q in the IBZ:
        for pd0, W0, q_c in self.calculate_screened_potential():
            for kpt1 in mykpts:
                K2 = kd.find_k_plus_q(q_c, [kpt1.K])[0]
                kpt2 = self.get_k_point(0, K2, 0, self.nbands, block=True)
                k1 = kd.bz2ibz_k[kpt1.K]
                i = self.kpts.index(k1)
                self.calculate_q(i, kpt1, kpt2, pd0, W0)

        self.world.sum(self.sigma_sin)
        self.world.sum(self.dsigma_sin)
        
        self.Z_sin = 1 / (1 - self.dsigma_sin)
        self.qp_sin = self.eps_sin + self.Z_sin * (self.sigma_sin +
                                                   self.exx_sin -
                                                   self.vxc_sin)
        
        results = {'f': self.f_sin,
                   'eps': self.eps_sin * Hartree,
                   'vxc': self.vxc_sin * Hartree,
                   'exx': self.exx_sin * Hartree,
                   'sigma': self.sigma_sin * Hartree,
                   'Z': self.Z_sin,
                   'qp': self.qp_sin * Hartree}
      
        self.print_results(results)
        
        return results
        
    def calculate_q(self, i, kpt1, kpt2, pd0, W0):
        """Calculates the contribution to the self-energy and its derivative
        for a given set of k-points, kpt1 and kpt2."""
        wfs = self.calc.wfs
        
        N_c = pd0.gd.N_c
        i_cG = self.sign * np.dot(self.U_cc,
                                  np.unravel_index(pd0.Q_qG[0], N_c))

        q_c = wfs.kd.bzk_kc[kpt2.K] - wfs.kd.bzk_kc[kpt1.K]
        q0 = np.allclose(q_c, 0) and not self.wstc

        shift0_c = q_c - self.sign * np.dot(self.U_cc, pd0.kd.bzk_kc[0])
        assert np.allclose(shift0_c.round(), shift0_c)
        shift0_c = shift0_c.round().astype(int)

        shift_c = kpt1.shift_c - kpt2.shift_c - shift0_c
        I_G = np.ravel_multi_index(i_cG + shift_c[:, None], N_c, 'wrap')
        
        G_Gv = pd0.get_reciprocal_vectors()
        pos_av = np.dot(self.spos_ac, pd0.gd.cell_cv)
        M_vv = np.dot(pd0.gd.cell_cv.T,
                      np.dot(self.U_cc.T,
                             np.linalg.inv(pd0.gd.cell_cv).T))
        
        Q_aGii = []
        for a, Q_Gii in enumerate(self.Q_aGii):
            x_G = np.exp(1j * np.dot(G_Gv, (pos_av[a] -
                                            self.sign *
                                            np.dot(M_vv, pos_av[a]))))
            U_ii = self.calc.wfs.setups[a].R_sii[self.s]
            Q_Gii = np.dot(np.dot(U_ii, Q_Gii * x_G[:, None, None]),
                           U_ii.T).transpose(1, 0, 2)
            Q_aGii.append(Q_Gii)

        if debug:
            self.check(i_cG, shift0_c, N_c, q_c, Q_aGii)
                
        if self.ppa:
            calculate_sigma = self.calculate_sigma_ppa
        else:
            calculate_sigma = self.calculate_sigma
            
        for n in range(kpt1.n2 - kpt1.n1):
            ut1cc_R = kpt1.ut_nR[n].conj()
            eps1 = kpt1.eps_n[n]
            C1_aGi = [np.dot(Qa_Gii, P1_ni[n].conj())
                      for Qa_Gii, P1_ni in zip(Q_aGii, kpt1.P_ani)]
            n_mG = self.calculate_pair_densities(ut1cc_R, C1_aGi, kpt2,
                                                 pd0, I_G)
            if self.sign == 1:
                n_mG = n_mG.conj()
                
            if q0:
                n_mG[:, 0] = 0
                m = n + kpt1.n1 - kpt2.n1
                if 0 <= m < len(n_mG):
                    n_mG[m, 0] = 1.0
                    
            f_m = kpt2.f_n
            deps_m = eps1 - kpt2.eps_n
            sigma, dsigma = calculate_sigma(n_mG, deps_m, f_m, W0)
            nn = kpt1.n1 + n - self.bands[0]
            self.sigma_sin[kpt1.s, i, nn] += sigma
            self.dsigma_sin[kpt1.s, i, nn] += dsigma
            
    def check(self, i_cG, shift0_c, N_c, q_c, Q_aGii):
        I0_G = np.ravel_multi_index(i_cG - shift0_c[:, None], N_c, 'wrap')
        qd1 = KPointDescriptor([q_c])
        pd1 = PWDescriptor(self.ecut, self.calc.wfs.gd, complex, qd1)
        G_I = np.empty(N_c.prod(), int)
        G_I[:] = -1
        I1_G = pd1.Q_qG[0]
        G_I[I1_G] = np.arange(len(I0_G))
        G_G = G_I[I0_G]
        assert len(I0_G) == len(I1_G)
        assert (G_G >= 0).all()

        for a, Q_Gii in enumerate(self.initialize_paw_corrections(pd1)):
            e = abs(Q_aGii[a] - Q_Gii[G_G]).max()
            assert e < 1e-12

    @timer('Sigma')
    def calculate_sigma(self, n_mG, deps_m, f_m, C_swGG):
        """Calculates a contribution to the self-energy and its derivative for
        a given (k, k-q)-pair from its corresponding pair-density and
        energy."""
        o_m = abs(deps_m)
        # Add small number to avoid zeros for degenerate states:
        sgn_m = np.sign(deps_m + 1e-15)
        
        # Pick +i*eta or -i*eta:
        s_m = (1 + sgn_m * np.sign(0.5 - f_m)).astype(int) // 2
        
        beta = (2**0.5 - 1) * self.domega0 / self.omega2
        w_m = (o_m / (self.domega0 + beta * o_m)).astype(int)
        o1_m = self.omega_w[w_m]
        o2_m = self.omega_w[w_m + 1]
        
        x = 1.0 / (self.qd.nbzkpts * 2 * pi * self.vol)
        sigma = 0.0
        dsigma = 0.0
        # Performing frequency integration
        for o, o1, o2, sgn, s, w, n_G in zip(o_m, o1_m, o2_m,
                                             sgn_m, s_m, w_m, n_mG):
            C1_GG = C_swGG[s][w]
            C2_GG = C_swGG[s][w + 1]
            p = x * sgn
            myn_G = n_G[self.Ga:self.Gb]
            sigma1 = p * np.dot(np.dot(myn_G, C1_GG), n_G.conj()).imag
            sigma2 = p * np.dot(np.dot(myn_G, C2_GG), n_G.conj()).imag
            sigma += ((o - o1) * sigma2 + (o2 - o) * sigma1) / (o2 - o1)
            dsigma += sgn * (sigma2 - sigma1) / (o2 - o1)
            
        return sigma, dsigma

    def calculate_screened_potential(self):
        """Calculates the screened potential for each q-point in the 1st BZ.
        Since many q-points are related by symmetry, the actual calculation is
        only done for q-points in the IBZ and the rest are obtained by symmetry
        transformations. Results are returned as a generator to that it is not
        necessary to store a huge matrix for each q-point in the memory."""
        # The decorator $timer('W') doesn't work for generators, do we will
        # have to manually start and stop the timer here:
        self.timer.start('W')
        print('Calculating screened Coulomb potential', file=self.fd)
        if self.wstc:
            print('Using Wigner-Seitz truncated Coloumb potential',
                  file=self.fd)
            
        if self.ppa:
            print('Using Godby-Needs plasmon-pole approximation:',
                  file=self.fd)
            print('    Fitting energy: i*E0, E0 = %.3f Hartee' % self.E0,
                  file=self.fd)

            # use small imaginary frequency to avoid dividing by zero:
            frequencies = [1e-10j, 1j * self.E0 * Hartree]
            
            parameters = {'eta': 0,
                          'hilbert': False,
                          'timeordered': False,
                          'frequencies': frequencies}
        else:
            print('Using full frequency integration:', file=self.fd)
            print('  domega0: {0:g}'.format(self.domega0 * Hartree),
                  file=self.fd)
            print('  omega2: {0:g}'.format(self.omega2 * Hartree),
                  file=self.fd)

            parameters = {'eta': self.eta * Hartree,
                          'hilbert': True,
                          'timeordered': True,
                          'domega0': self.domega0 * Hartree,
                          'omega2': self.omega2 * Hartree}
        
        chi0 = Chi0(self.calc,
                    nbands=self.nbands,
                    ecut=self.ecut * Hartree,
                    intraband=False,
                    real_space_derivatives=False,
                    txt=self.filename + '.w.txt',
                    timer=self.timer,
                    keep_occupied_states=True,
                    nblocks=self.blockcomm.size,
                    no_optical_limit=self.wstc,
                    **parameters)

        if self.wstc:
            wstc = WignerSeitzTruncatedCoulomb(
                self.calc.wfs.gd.cell_cv,
                self.calc.wfs.kd.N_c,
                chi0.fd)
        else:
            wstc = None
        
        self.omega_w = chi0.omega_w
        self.omegamax = chi0.omegamax
        
        htp = HilbertTransform(self.omega_w, self.eta, gw=True)
        htm = HilbertTransform(self.omega_w, -self.eta, gw=True)

        # Find maximum size of chi-0 matrices:
        gd = self.calc.wfs.gd
        nGmax = max(count_reciprocal_vectors(self.ecut, gd, q_c)
                    for q_c in self.qd.ibzk_kc)
        nw = len(self.omega_w)
        
        size = self.blockcomm.size
        mynGmax = (nGmax + size - 1) // size
        mynw = (nw + size - 1) // size
        
        # Allocate memory in the beginning and use for all q:
        A1_x = np.empty(nw * mynGmax * nGmax, complex)
        A2_x = np.empty(max(mynw * nGmax, nw * mynGmax) * nGmax, complex)
        
        # Need to pause the timer in between iterations
        self.timer.stop('W')
        for iq, q_c in enumerate(self.qd.ibzk_kc):
            self.timer.start('W')
            if self.savew:
                wfilename = self.filename + '.w.q%d.pckl' % iq
                fd = opencew(wfilename)
            if self.savew and fd is None:
                # Read screened potential from file
                with open(wfilename) as fd:
                    pd, W = pickle.load(fd)
            else:
                # First time calculation
                pd, W = self.calculate_w(chi0, q_c, htp, htm, wstc, A1_x, A2_x)
                if self.savew:
                    pickle.dump((pd, W), fd, pickle.HIGHEST_PROTOCOL)

            self.timer.stop('W')
            # Loop over all k-points in the BZ and find those that are related
            # to the current IBZ k-point by symmetry
            Q1 = self.qd.ibz2bz_k[iq]
            done = set()
            for s, Q2 in enumerate(self.qd.bz2bz_ks[Q1]):
                if Q2 >= 0 and Q2 not in done:
                    s = self.qd.sym_k[Q2]
                    self.s = s
                    self.U_cc = self.qd.symmetry.op_scc[s]
                    time_reversal = self.qd.time_reversal_k[Q2]
                    self.sign = 1 - 2 * time_reversal
                    Q_c = self.qd.bzk_kc[Q2]
                    d_c = self.sign * np.dot(self.U_cc, q_c) - Q_c
                    assert np.allclose(d_c.round(), d_c)
                    yield pd, W, Q_c
                    done.add(Q2)
    
    @timer('WW')
    def calculate_w(self, chi0, q_c, htp, htm, wstc, A1_x, A2_x):
        """Calculates the screened potential for a specified q-point."""
        pd, chi0_wGG = chi0.calculate(q_c, A_x=A1_x)[:2]
        self.Q_aGii = chi0.Q_aGii
        self.Ga = chi0.Ga
        self.Gb = chi0.Gb
        
        if self.blockcomm.size > 1:
            A1_x = chi0_wGG.ravel()
            chi0_wGG = chi0.redistribute(chi0_wGG, A2_x)
            
        if self.wstc:
            iG_G = (wstc.get_potential(pd) / (4 * pi))**0.5
            if np.allclose(q_c, 0):
                chi0_wGG[:, 0] = 0.0
                chi0_wGG[:, :, 0] = 0.0
                G0inv = 0.0
                G20inv = 0.0
            else:
                G0inv = None
                G20inv = None
        else:
            if np.allclose(q_c, 0):
                dq3 = (2 * pi)**3 / (self.qd.nbzkpts * self.vol)
                qc = (dq3 / 4 / pi * 3)**(1 / 3)
                G0inv = 2 * pi * qc**2 / dq3
                G20inv = 4 * pi * qc / dq3
                G_G = pd.G2_qG[0]**0.5
                G_G[0] = 1
                iG_G = 1 / G_G
            else:
                iG_G = pd.G2_qG[0]**-0.5
                G0inv = None
                G20inv = None

        delta_GG = np.eye(len(iG_G))

        if self.ppa:
            return pd, self.ppa_w(chi0_wGG, iG_G, delta_GG, G0inv, G20inv, q_c)
            
        self.timer.start('Dyson eq.')
        # Calculate W and store it in chi0_wGG ndarray:
        for chi0_GG in chi0_wGG:
            e_GG = (delta_GG -
                    4 * pi * chi0_GG * iG_G * iG_G[:, np.newaxis])
            W_GG = chi0_GG
            W_GG[:] = 4 * pi * (np.linalg.inv(e_GG) -
                                delta_GG) * iG_G * iG_G[:, np.newaxis]
            if np.allclose(q_c, 0):
                W_GG[0, 0] *= G20inv
                W_GG[1:, 0] *= G0inv
                W_GG[0, 1:] *= G0inv
                
        if self.blockcomm.size > 1:
            Wm_wGG = chi0.redistribute(chi0_wGG, A1_x)
        else:
            Wm_wGG = chi0_wGG
            
        Wp_wGG = A2_x[:Wm_wGG.size].reshape(Wm_wGG.shape)
        Wp_wGG[:] = Wm_wGG

        with self.timer('Hilbert transform'):
            htp(Wp_wGG)
            htm(Wm_wGG)
        self.timer.stop('Dyson eq.')
        
        return pd, [Wp_wGG, Wm_wGG]

    @timer('Kohn-Sham XC-contribution')
    def calculate_ks_xc_contribution(self):
        name = self.filename + '.vxc.npy'
        fd = opencew(name)
        if fd is None:
            print('Reading Kohn-Sham XC contribution from file:', name,
                  file=self.fd)
            with open(name) as fd:
                self.vxc_sin = np.load(fd)
            assert self.vxc_sin.shape == self.shape, self.vxc_sin.shape
            return
            
        print('Calculating Kohn-Sham XC contribution', file=self.fd)
        if self.reader is not None:
            self.calc.wfs.read_projections(self.reader)
        vxc_skn = vxc(self.calc, self.calc.hamiltonian.xc) / Hartree
        n1, n2 = self.bands
        self.vxc_sin = vxc_skn[:, self.kpts, n1:n2]
        np.save(fd, self.vxc_sin)
        
    @timer('EXX')
    def calculate_exact_exchange(self):
        name = self.filename + '.exx.npy'
        fd = opencew(name)
        if fd is None:
            print('Reading EXX contribution from file:', name, file=self.fd)
            with open(name) as fd:
                self.exx_sin = np.load(fd)
            assert self.exx_sin.shape == self.shape, self.exx_sin.shape
            return
            
        print('Calculating EXX contribution', file=self.fd)
        exx = EXX(self.calc, kpts=self.kpts, bands=self.bands,
                  txt=self.filename + '.exx.txt', timer=self.timer)
        exx.calculate()
        self.exx_sin = exx.get_eigenvalue_contributions() / Hartree
        np.save(fd, self.exx_sin)

    def print_results(self, results):
        description = ['f:     Occupation numbers',
                       'eps:   KS-eigenvalues [eV]',
                       'vxc:   KS vxc [eV]',
                       'exx:   Exact exchange [eV]',
                       'sigma: Self-energies [eV]',
                       'Z:     Renormalization factors',
                       'qp:    QP-energies [eV]']

        print('\nResults:', file=self.fd)
        for line in description:
            print(line, file=self.fd)
            
        b1, b2 = self.bands
        names = [line.split(':', 1)[0] for line in description]
        ibzk_kc = self.calc.wfs.kd.ibzk_kc
        for s in range(self.calc.wfs.nspins):
            for i, ik in enumerate(self.kpts):
                print('\nk-point ' +
                      '{0} ({1}): ({2:.3f}, {3:.3f}, {4:.3f})'.format(
                          i, ik, *ibzk_kc[ik]), file=self.fd)
                print('band' +
                      ''.join('{0:>8}'.format(name) for name in names),
                      file=self.fd)
                for n in range(b2 - b1):
                    print('{0:4}'.format(n + b1) +
                          ''.join('{0:8.3f}'.format(results[name][s, i, n])
                                  for name in names),
                          file=self.fd)

        self.timer.write(self.fd)

    @timer('PPA')
    def ppa_w(self, chi0_wGG, iG_G, delta_GG, G0inv, G20inv, q_c):
        einv_wGG = []
        for chi0_GG in chi0_wGG:
            e_GG = (delta_GG -
                    4 * pi * chi0_GG * iG_G * iG_G[:, np.newaxis])
            einv_wGG.append(np.linalg.inv(e_GG) - delta_GG)

        if self.wstc and np.allclose(q_c, 0):
            einv_wGG[0][0] = 42
            einv_wGG[0][:, 0] = 42
        omegat_GG = self.E0 * np.sqrt(einv_wGG[1] /
                                      (einv_wGG[0] - einv_wGG[1]))
        R_GG = -0.5 * omegat_GG * einv_wGG[0]
        W_GG = 4 * pi**2 * R_GG * iG_G * iG_G[:, np.newaxis]
        if np.allclose(q_c, 0):
            W_GG[0, 0] *= G20inv
            W_GG[1:, 0] *= G0inv
            W_GG[0, 1:] *= G0inv

        return [W_GG, omegat_GG]
        
    @timer('PPA-Sigma')
    def calculate_sigma_ppa(self, n_mG, deps_m, f_m, W):
        W_GG, omegat_GG = W

        sigma = 0.0
        dsigma = 0.0

        # init variables (is this necessary?)
        nG = n_mG.shape[1]
        deps_GG = np.empty((nG, nG))
        sign_GG = np.empty((nG, nG))
        x1_GG = np.empty((nG, nG))
        x2_GG = np.empty((nG, nG))
        x3_GG = np.empty((nG, nG))
        x4_GG = np.empty((nG, nG))
        x_GG = np.empty((nG, nG))
        dx_GG = np.empty((nG, nG))
        nW_G = np.empty(nG)
        for m in range(np.shape(n_mG)[0]):
            deps_GG = deps_m[m]
            sign_GG = 2 * f_m[m] - 1
            x1_GG = 1 / (deps_GG + omegat_GG - 1j * self.eta)
            x2_GG = 1 / (deps_GG - omegat_GG + 1j * self.eta)
            x3_GG = 1 / (deps_GG + omegat_GG - 1j * self.eta * sign_GG)
            x4_GG = 1 / (deps_GG - omegat_GG - 1j * self.eta * sign_GG)
            x_GG = W_GG * (sign_GG * (x1_GG - x2_GG) + x3_GG + x4_GG)
            dx_GG = W_GG * (sign_GG * (x1_GG**2 - x2_GG**2) +
                            x3_GG**2 + x4_GG**2)
            nW_G = np.dot(n_mG[m], x_GG)
            sigma += np.vdot(n_mG[m], nW_G).real
            nW_G = np.dot(n_mG[m], dx_GG)
            dsigma -= np.vdot(n_mG[m], nW_G).real
        
        x = 1 / (self.qd.nbzkpts * 2 * pi * self.vol)
        return x * sigma, x * dsigma
Пример #37
0
class UTGaussianWavefunctionSetup(UTDomainParallelSetup):
    __doc__ = UTDomainParallelSetup.__doc__ + """
    The pseudo wavefunctions are moving gaussians centered around each atom."""

    allocated = False
    dtype = None

    # Default arguments for scaled Gaussian wave
    _sigma0 = 2.0 #0.75
    _k0_c = 2*np.pi*np.array([1/5., 1/3., 0.])

    def setUp(self):
        UTDomainParallelSetup.setUp(self)

        for virtvar in ['dtype']:
            assert getattr(self,virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Create randomized atoms
        self.atoms = create_random_atoms(self.gd, 5) # also tested: 10xNH3/BDA

        # XXX DEBUG START
        if False:
            from ase import view
            view(self.atoms*(1+2*self.gd.pbc_c))
        # XXX DEBUG END

        # Do we agree on the atomic positions?
        pos_ac = self.atoms.get_positions()
        pos_rac = np.empty((world.size,)+pos_ac.shape, pos_ac.dtype)
        world.all_gather(pos_ac, pos_rac)
        if (pos_rac-pos_rac[world.rank,...][np.newaxis,...]).any():
            raise RuntimeError('Discrepancy in atomic positions detected.')

        # Create setups for atoms
        self.Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(self.Z_a, p.setups, p.basis,
                             p.lmax, xc)

        # K-point descriptor
        bzk_kc = np.array([[0, 0, 0]], dtype=float)
        self.kd = KPointDescriptor(bzk_kc, 1)
        self.kd.set_symmetry(self.atoms, self.setups, usesymm=True)
        self.kd.set_communicator(self.kpt_comm)
        
        # Create gamma-point dummy wavefunctions
        self.wfs = FDWFS(self.gd, self.bd, self.kd, self.setups,
                         self.dtype)
        
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.wfs.set_positions(spos_ac)
        self.pt = self.wfs.pt # XXX shortcut

        ## Also create pseudo partial waveves
        #from gpaw.lfc import LFC
        #self.phit = LFC(self.gd, [setup.phit_j for setup in self.setups], \
        #                self.kpt_comm, dtype=self.dtype)
        #self.phit.set_positions(spos_ac)

        self.r_cG = None
        self.buf_G = None
        self.psit_nG = None

        self.allocate()

    def tearDown(self):
        UTDomainParallelSetup.tearDown(self)
        del self.r_cG, self.buf_G, self.psit_nG
        del self.pt, self.setups, self.atoms
        self.allocated = False

    def allocate(self):
        self.r_cG = self.gd.get_grid_point_coordinates()
        cell_cv = self.atoms.get_cell() / Bohr
        assert np.abs(cell_cv-self.gd.cell_cv).max() < 1e-9
        center_c = 0.5*cell_cv.diagonal()

        self.buf_G = self.gd.empty(dtype=self.dtype)
        self.psit_nG = self.gd.empty(self.bd.mynbands, dtype=self.dtype)

        for myn,psit_G in enumerate(self.psit_nG):
            n = self.bd.global_index(myn)
            psit_G[:] = self.get_scaled_gaussian_wave(center_c, scale=10+2j*n)

            k_c = 2*np.pi*np.array([1/2., -1/7., 0.])
            for pos_c in self.atoms.get_positions() / Bohr:
                sigma = self._sigma0/(1+np.sum(pos_c**2))**0.5
                psit_G += self.get_scaled_gaussian_wave(pos_c, sigma, k_c, n+5j)

        self.allocated = True

    def get_scaled_gaussian_wave(self, pos_c, sigma=None, k_c=None, scale=None):
        if sigma is None:
            sigma = self._sigma0

        if k_c is None:
            k_c = self._k0_c

        if scale is None:
            A = None
        else:
            # 4*pi*int(exp(-r^2/(2*w^2))^2*r^2, r=0...infinity)= w^3*pi^(3/2)
            # = scale/A^2 -> A = scale*(sqrt(Pi)*w)^(-3/2) hence int -> scale^2
            A = scale/(sigma*(np.pi)**0.5)**1.5

        return gaussian_wave(self.r_cG, pos_c, sigma, k_c, A, self.dtype, self.buf_G)

    def check_and_plot(self, P_ani, P0_ani, digits, keywords=''):
        # Collapse into viewable matrices
        P_In = self.wfs.collect_projections(P_ani)
        P0_In = self.wfs.collect_projections(P0_ani)

        # Construct fingerprint of input matrices for comparison
        fingerprint = np.array([md5_array(P_In, numeric=True),
                                md5_array(P0_In, numeric=True)])

        # Compare fingerprints across all processors
        fingerprints = np.empty((world.size, 2), np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        # If assertion fails, catch temporarily while plotting, then re-raise
        try:
            self.assertAlmostEqual(np.abs(P_In-P0_In).max(), 0, digits)
        except AssertionError:
            if world.rank == 0 and mpl is not None:
                from matplotlib.figure import Figure
                fig = Figure()
                ax = fig.add_axes([0.0, 0.1, 1.0, 0.83])
                ax.set_title(self.__class__.__name__)
                im = ax.imshow(np.abs(P_In-P0_In), interpolation='nearest')
                fig.colorbar(im)
                fig.text(0.5, 0.05, 'Keywords: ' + keywords, \
                    horizontalalignment='center', verticalalignment='top')

                from matplotlib.backends.backend_agg import FigureCanvasAgg
                img = 'ut_invops_%s_%s.png' % (self.__class__.__name__, \
                    '_'.join(keywords.split(',')))
                FigureCanvasAgg(fig).print_figure(img.lower(), dpi=90)
            raise

    # =================================

    def test_projection_linearity(self):
        kpt = self.wfs.kpt_u[0]
        Q_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(self.psit_nG, Q_ani, q=kpt.q)

        for Q_ni in Q_ani.values():
            self.assertTrue(Q_ni.dtype == self.dtype)

        P0_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        self.pt.add(self.psit_nG, Q_ani, q=kpt.q)
        self.pt.integrate(self.psit_nG, P0_ani, q=kpt.q)

        #rank_a = self.gd.get_ranks_from_positions(spos_ac)
        #my_atom_indices = np.argwhere(self.gd.comm.rank == rank_a).ravel()

        #                                                ~ a   ~ a'
        #TODO XXX should fix PairOverlap-ish stuff for < p  | phi  > overlaps
        #                                                 i      i'

        #spos_ac = self.pt.spos_ac # NewLFC doesn't have this
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        gpo = GridPairOverlap(self.gd, self.setups)
        B_aa = gpo.calculate_overlaps(spos_ac, self.pt)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        P_ani = dict([(a,Q_ni.copy()) for a,Q_ni in Q_ani.items()])
        for a1 in range(len(self.atoms)):
            if a1 in P_ani.keys():
                P_ni = P_ani[a1]
            else:
                # Atom a1 is not in domain so allocate a temporary buffer
                P_ni = np.zeros((self.bd.mynbands,self.setups[a1].ni,),
                                 dtype=self.dtype)
            for a2, Q_ni in Q_ani.items():
                # B_aa are the projector overlaps across atomic pairs
                B_ii = gpo.extract_atomic_pair_matrix(B_aa, a1, a2)
                P_ni += np.dot(Q_ni, B_ii.T) #sum over a2 and last i in B_ii
            self.gd.comm.sum(P_ni)

        self.check_and_plot(P_ani, P0_ani, 8, 'projection,linearity')

    def test_extrapolate_overlap(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,overlap')

    def test_extrapolate_inverse(self):
        kpt = self.wfs.kpt_u[0]
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        P_ani = ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, \
            calculate_P_ani=True, extrapolate_P_ani=True)

        P0_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(work_nG, P0_ani, kpt.q)
        del work_nG

        self.check_and_plot(P_ani, P0_ani, 11, 'extrapolate,inverse')

    def test_overlap_inverse_after(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply_inverse(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,after')

    def test_overlap_inverse_before(self):
        kpt = self.wfs.kpt_u[0]
        kpt.P_ani = self.pt.dict(self.bd.mynbands)
        ppo = ProjectorPairOverlap(self.wfs, self.atoms)

        # Compare fingerprints across all processors
        fingerprint = np.array([md5_array(ppo.B_aa, numeric=True)])
        fingerprints = np.empty(world.size, np.int64)
        world.all_gather(fingerprint, fingerprints)
        if fingerprints.ptp(0).any():
            raise RuntimeError('Distributed matrices are not identical!')

        work_nG = np.empty_like(self.psit_nG)
        self.pt.integrate(self.psit_nG, kpt.P_ani, kpt.q)
        P0_ani = dict([(a,P_ni.copy()) for a,P_ni in kpt.P_ani.items()])
        ppo.apply_inverse(self.psit_nG, work_nG, self.wfs, kpt, calculate_P_ani=False)

        res_nG = np.empty_like(self.psit_nG)
        ppo.apply(work_nG, res_nG, self.wfs, kpt, calculate_P_ani=True)
        del work_nG

        P_ani = self.pt.dict(self.bd.mynbands)
        self.pt.integrate(res_nG, P_ani, kpt.q)

        abserr = np.empty(1, dtype=float)
        for n in range(self.nbands):
            band_rank, myn = self.bd.who_has(n)
            if band_rank == self.bd.comm.rank:
                abserr[:] = np.abs(self.psit_nG[myn] - res_nG[myn]).max()
                self.gd.comm.max(abserr)
            self.bd.comm.broadcast(abserr, band_rank)
            self.assertAlmostEqual(abserr.item(), 0, 10)

        self.check_and_plot(P_ani, P0_ani, 10, 'overlap,inverse,before')
Пример #38
0
    def create_wave_functions(self, mode, realspace, nspins, nbands, nao,
                              nvalence, setups, magmom_a, cell_cv, pbc_c):
        par = self.parameters

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins)

        self.timer.start('Set symmetry')
        kd.set_symmetry(self.atoms, self.symmetry, comm=self.world)
        self.timer.stop('Set symmetry')

        self.log(kd)

        parallelization = mpi.Parallelization(self.world, nspins * kd.nibzkpts)

        parsize_kpt = self.parallel['kpt']
        parsize_domain = self.parallel['domain']
        parsize_bands = self.parallel['band']

        ndomains = None
        if parsize_domain is not None:
            ndomains = np.prod(parsize_domain)
        if mode.name == 'pw':
            if ndomains is not None and ndomains > 1:
                raise ValueError('Planewave mode does not support '
                                 'domain decomposition.')
            ndomains = 1
        parallelization.set(kpt=parsize_kpt,
                            domain=ndomains,
                            band=parsize_bands)
        comms = parallelization.build_communicators()
        domain_comm = comms['d']
        kpt_comm = comms['k']
        band_comm = comms['b']
        kptband_comm = comms['D']
        domainband_comm = comms['K']

        self.comms = comms

        if par.gpts is not None:
            if par.h is not None:
                raise ValueError("""You can't use both "gpts" and "h"!""")
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        self.symmetry.check_grid(N_c)

        kd.set_communicator(kpt_comm)

        parstride_bands = self.parallel['stridebands']

        # Unfortunately we need to remember that we adjusted the
        # number of bands so we can print a warning if it differs
        # from the number specified by the user.  (The number can
        # be inferred from the input parameters, but it's tricky
        # because we allow negative numbers)
        self.nbands_parallelization_adjustment = -nbands % band_comm.size
        nbands += self.nbands_parallelization_adjustment

        bd = BandDescriptor(nbands, band_comm, parstride_bands)

        # Construct grid descriptor for coarse grids for wave functions:
        gd = self.create_grid_descriptor(N_c, cell_cv, pbc_c, domain_comm,
                                         parsize_domain)

        if hasattr(self, 'time') or mode.force_complex_dtype:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        wfs_kwargs = dict(gd=gd,
                          nvalence=nvalence,
                          setups=setups,
                          bd=bd,
                          dtype=dtype,
                          world=self.world,
                          kd=kd,
                          kptband_comm=kptband_comm,
                          timer=self.timer)

        if self.parallel['sl_auto']:
            # Choose scalapack parallelization automatically

            for key, val in self.parallel.items():
                if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                    raise ValueError("Cannot use 'sl_auto' together "
                                     "with '%s'" % key)
            max_scalapack_cpus = bd.comm.size * gd.comm.size
            nprow = max_scalapack_cpus
            npcol = 1

            # Get a sort of reasonable number of columns/rows
            while npcol < nprow and nprow % 2 == 0:
                npcol *= 2
                nprow //= 2
            assert npcol * nprow == max_scalapack_cpus

            # ScaLAPACK creates trouble if there aren't at least a few
            # whole blocks; choose block size so there will always be
            # several blocks.  This will crash for small test systems,
            # but so will ScaLAPACK in any case
            blocksize = min(-(-nbands // 4), 64)
            sl_default = (nprow, npcol, blocksize)
        else:
            sl_default = self.parallel['sl_default']

        if mode.name == 'lcao':
            # Layouts used for general diagonalizer
            sl_lcao = self.parallel['sl_lcao']
            if sl_lcao is None:
                sl_lcao = sl_default
            lcaoksl = get_KohnSham_layouts(sl_lcao,
                                           'lcao',
                                           gd,
                                           bd,
                                           domainband_comm,
                                           dtype,
                                           nao=nao,
                                           timer=self.timer)

            self.wfs = mode(lcaoksl, **wfs_kwargs)

        elif mode.name == 'fd' or mode.name == 'pw':
            # buffer_size keyword only relevant for fdpw
            buffer_size = self.parallel['buffer_size']
            # Layouts used for diagonalizer
            sl_diagonalize = self.parallel['sl_diagonalize']
            if sl_diagonalize is None:
                sl_diagonalize = sl_default
            diagksl = get_KohnSham_layouts(
                sl_diagonalize,
                'fd',  # XXX
                # choice of key 'fd' not so nice
                gd,
                bd,
                domainband_comm,
                dtype,
                buffer_size=buffer_size,
                timer=self.timer)

            # Layouts used for orthonormalizer
            sl_inverse_cholesky = self.parallel['sl_inverse_cholesky']
            if sl_inverse_cholesky is None:
                sl_inverse_cholesky = sl_default
            if sl_inverse_cholesky != sl_diagonalize:
                message = 'sl_inverse_cholesky != sl_diagonalize ' \
                    'is not implemented.'
                raise NotImplementedError(message)
            orthoksl = get_KohnSham_layouts(sl_inverse_cholesky,
                                            'fd',
                                            gd,
                                            bd,
                                            domainband_comm,
                                            dtype,
                                            buffer_size=buffer_size,
                                            timer=self.timer)

            # Use (at most) all available LCAO for initialization
            lcaonbands = min(nbands, nao // band_comm.size * band_comm.size)

            try:
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
            except RuntimeError:
                initksl = None
            else:
                # Layouts used for general diagonalizer
                # (LCAO initialization)
                sl_lcao = self.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                initksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               lcaobd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

            self.wfs = mode(diagksl, orthoksl, initksl, **wfs_kwargs)
        else:
            self.wfs = mode(self, **wfs_kwargs)

        self.log(self.wfs, '\n')
Пример #39
0
Файл: paw.py Проект: qsnake/gpaw
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        self.set_text(par.txt, par.verbose)

        natoms = len(atoms)

        pos_av = atoms.get_positions() / Bohr
        cell_cv = atoms.get_cell()
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_a = atoms.get_initial_magnetic_moments()

        magnetic = magmom_a.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a '
                             'spin-paired calculation!')

        nspins = 1 + int(spinpol)
        
        if isinstance(par.xc, str):
            xc = XC(par.xc)
        else:
            xc = par.xc

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc, world)

        # K-point descriptor
        kd = KPointDescriptor(par.kpts, nspins)

        width = par.width
        if width is None:
            if kd.gamma:
                width = 0.0
            else:
                width = 0.1  # eV
        else:
            assert par.occupations is None
      
        if par.gpts is not None and par.h is None:
            N_c = np.array(par.gpts)
        else:
            if par.h is None:
                self.text('Using default value for grid spacing.')
                h = 0.2 
            else:
                h = par.h
            N_c = h2gpts(h, cell_cv)

        cell_cv /= Bohr


        if hasattr(self, 'time') or par.dtype==complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        kd.set_symmetry(atoms, setups, par.usesymm, N_c)

        nao = setups.nao
        nvalence = setups.nvalence - par.charge

        nbands = par.nbands
        if nbands is None:
            nbands = nao
        elif nbands > nao and par.mode == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: ' +
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        M = magmom_a.sum()
        if par.hund:
            f_si = setups[0].calculate_initial_occupation_numbers(
                magmom=0, hund=True, charge=par.charge, nspins=nspins)
            Mh = f_si[0].sum() - f_si[1].sum()
            if magnetic and M != Mh:
                raise RuntimeError('You specified a magmom that does not'
                                   'agree with hunds rule!')
            else:
                M = Mh

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands:
            raise ValueError('Too few bands!  Electrons: %d, bands: %d'
                             % (nvalence, nbands))

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                self.occupations = occupations.FermiDirac(width, par.fixmom)
            else:
                self.occupations = par.occupations

        self.occupations.magmom = M

        cc = par.convergence

        if par.mode == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            self.scf = SCFLoop(
                cc['eigenstates'] * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity)

        parsize, parsize_bands = par.parallel['domain'], par.parallel['band']

        if parsize_bands is None:
            parsize_bands = 1

        # TODO delete/restructure so all checks are in BandDescriptor
        if nbands % parsize_bands != 0:
            raise RuntimeError('Cannot distribute %d bands to %d processors' %
                               (nbands, parsize_bands))

        if not self.wfs:
            if parsize == 'domain only': #XXX this was silly!
                parsize = world.size

            domain_comm, kpt_comm, band_comm = mpi.distribute_cpus(parsize,
                parsize_bands, nspins, kd.nibzkpts, world, par.idiotproof)

            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError("I'm confused - please specify parsize."
                                       )
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, self.timer)

            if par.mode == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = par.parallel['sl_default']
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, dtype,
                                               nao=nao, timer=self.timer)

                self.wfs = LCAOWaveFunctions(lcaoksl, *args)
            elif par.mode == 'fd' or isinstance(par.mode, PW):
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = par.parallel['sl_default']
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',
                                               gd, bd, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = par.parallel['sl_default']
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
                assert nbands <= nao or bd.comm.size == 1
                assert lcaobd.mynbands == min(bd.mynbands, nao) #XXX

                # Layouts used for general diagonalizer (LCAO initialization)
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = par.parallel['sl_default']
                initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, lcaobd, dtype, 
                                               nao=nao,
                                               timer=self.timer)

                if par.mode == 'fd':
                    self.wfs = FDWaveFunctions(par.stencils[0], diagksl,
                                               orthoksl, initksl, *args)
                else:
                    # Planewave basis:
                    self.wfs = par.mode(diagksl, orthoksl, initksl,
                                        gd, nvalence, setups, bd,
                                        world, kd, self.timer)
            else:
                self.wfs = par.mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, par.mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd
            self.density = Density(gd, finegd, nspins,
                                   par.charge + setups.core_charge)

        self.density.initialize(setups, par.stencils[1], self.timer,
                                magmom_a, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            self.hamiltonian = Hamiltonian(gd, finegd, nspins,
                                           setups, par.stencils[1], self.timer,
                                           xc, par.poissonsolver,
                                           par.external)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        if dry_run:
            self.dry_run()

        self.initialized = True
Пример #40
0
class PhononCalculator:
    """This class defines the interface for phonon calculations."""
    def __init__(self,
                 calc,
                 gamma=True,
                 symmetry=False,
                 e_ph=False,
                 communicator=serial_comm):
        """Inititialize class with a list of atoms.

        The atoms object must contain a converged ground-state calculation.

        The set of q-vectors in which the dynamical matrix will be calculated
        is determined from the ``symmetry`` kwarg. For now, only time-reversal
        symmetry is used to generate the irrecducible BZ.

        Add a little note on parallelization strategy here.

        Parameters
        ----------
        calc: str or Calculator
            Calculator containing a ground-state calculation.
        gamma: bool
            Gamma-point calculation with respect to the q-vector of the
            dynamical matrix. When ``False``, the Monkhorst-Pack grid from the
            ground-state calculation is used.
        symmetry: bool
            Use symmetries to reduce the q-vectors of the dynamcial matrix
            (None, False or True). The different options are equivalent to the
            old style options in a ground-state calculation (see usesymm).
        e_ph: bool
            Save the derivative of the effective potential.
        communicator: Communicator
            Communicator for parallelization over k-points and real-space
            domain.
        """

        # XXX
        assert symmetry in [None, False], "Spatial symmetries not allowed yet"

        if isinstance(calc, str):
            self.calc = GPAW(calc, communicator=serial_comm, txt=None)
        else:
            self.calc = calc

        cell_cv = self.calc.atoms.get_cell()
        setups = self.calc.wfs.setups
        # XXX - no clue how to get magmom - ignore it for the moment
        # m_av = magmom_av.round(decimals=3)  # round off
        # id_a = zip(setups.id_a, *m_av.T)
        id_a = setups.id_a

        if symmetry is None:
            self.symmetry = Symmetry(id_a,
                                     cell_cv,
                                     point_group=False,
                                     time_reversal=False)
        else:
            self.symmetry = Symmetry(id_a,
                                     cell_cv,
                                     point_group=False,
                                     time_reversal=True)

        # Make sure localized functions are initialized
        self.calc.set_positions()
        # Note that this under some circumstances (e.g. when called twice)
        # allocates a new array for the P_ani coefficients !!

        # Store useful objects
        self.atoms = self.calc.get_atoms()
        # Get rid of ``calc`` attribute
        self.atoms.calc = None

        # Boundary conditions
        pbc_c = self.calc.atoms.get_pbc()

        if np.all(pbc_c == False):
            self.gamma = True
            self.dtype = float
            kpts = None
            # Multigrid Poisson solver
            poisson_solver = PoissonSolver()
        else:
            if gamma:
                self.gamma = True
                self.dtype = float
                kpts = None
            else:
                self.gamma = False
                self.dtype = complex
                # Get k-points from ground-state calculation
                kpts = self.calc.input_parameters.kpts

            # FFT Poisson solver
            poisson_solver = FFTPoissonSolver(dtype=self.dtype)

        # K-point descriptor for the q-vectors of the dynamical matrix
        # Note, no explicit parallelization here.
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.symmetry)
        self.kd.set_communicator(serial_comm)

        # Number of occupied bands
        nvalence = self.calc.wfs.nvalence
        nbands = nvalence // 2 + nvalence % 2
        assert nbands <= self.calc.wfs.bd.nbands

        # Extract other useful objects
        # Ground-state k-point descriptor - used for the k-points in the
        # ResponseCalculator
        # XXX replace communicators when ready to parallelize
        kd_gs = self.calc.wfs.kd
        gd = self.calc.density.gd
        kpt_u = self.calc.wfs.kpt_u
        setups = self.calc.wfs.setups
        dtype_gs = self.calc.wfs.dtype

        # WaveFunctions
        wfs = WaveFunctions(nbands, kpt_u, setups, kd_gs, gd, dtype=dtype_gs)

        # Linear response calculator
        self.response_calc = ResponseCalculator(self.calc,
                                                wfs,
                                                dtype=self.dtype)

        # Phonon perturbation
        self.perturbation = PhononPerturbation(self.calc,
                                               self.kd,
                                               poisson_solver,
                                               dtype=self.dtype)

        # Dynamical matrix
        self.dyn = DynamicalMatrix(self.atoms, self.kd, dtype=self.dtype)

        # Electron-phonon couplings
        if e_ph:
            self.e_ph = ElectronPhononCoupling(self.atoms,
                                               gd,
                                               self.kd,
                                               dtype=self.dtype)
        else:
            self.e_ph = None

        # Initialization flag
        self.initialized = False

        # Parallel communicator for parallelization over kpts and domain
        self.comm = communicator

    def initialize(self):
        """Initialize response calculator and perturbation."""

        # Get scaled atomic positions
        spos_ac = self.atoms.get_scaled_positions()

        self.perturbation.initialize(spos_ac)
        self.response_calc.initialize(spos_ac)

        self.initialized = True

    def __getstate__(self):
        """Method used when pickling.

        Bound method attributes cannot be pickled and must therefore be deleted
        before an instance is dumped to file.

        """

        # Get state of object and take care of troublesome attributes
        state = dict(self.__dict__)
        state['kd'].__dict__['comm'] = serial_comm
        state.pop('calc')
        state.pop('perturbation')
        state.pop('response_calc')

        return state

    def run(self, qpts_q=None, clean=False, name=None, path=None):
        """Run calculation for atomic displacements and update matrix.

        Parameters
        ----------
        qpts: List
            List of q-points indices for which the dynamical matrix will be
            calculated (only temporary).

        """

        if not self.initialized:
            self.initialize()

        if self.gamma:
            qpts_q = [0]
        elif qpts_q is None:
            qpts_q = range(self.kd.nibzkpts)
        else:
            assert isinstance(qpts_q, list)

        # Update name and path attributes
        self.set_name_and_path(name=name, path=path)
        # Get string template for filenames
        filename_str = self.get_filename_string()

        # Delay the ranks belonging to the same k-point/domain decomposition
        # equally
        time.sleep(rank // self.comm.size)

        # XXX Make a single ground_state_contributions member function
        # Ground-state contributions to the force constants
        self.dyn.density_ground_state(self.calc)
        # self.dyn.wfs_ground_state(self.calc, self.response_calc)

        # Calculate linear response wrt q-vectors and displacements of atoms
        for q in qpts_q:

            if not self.gamma:
                self.perturbation.set_q(q)

            # First-order contributions to the force constants
            for a in self.dyn.indices:
                for v in [0, 1, 2]:

                    # Check if the calculation has already been done
                    filename = filename_str % (q, a, v)
                    # Wait for all sub-ranks to enter
                    self.comm.barrier()

                    if os.path.isfile(os.path.join(self.path, filename)):
                        continue

                    if self.comm.rank == 0:
                        fd = open(os.path.join(self.path, filename), 'w')

                    # Wait for all sub-ranks here
                    self.comm.barrier()

                    components = ['x', 'y', 'z']
                    symbols = self.atoms.get_chemical_symbols()
                    print("q-vector index: %i" % q)
                    print("Atom index: %i" % a)
                    print("Atomic symbol: %s" % symbols[a])
                    print("Component: %s" % components[v])

                    # Set atom and cartesian component of perturbation
                    self.perturbation.set_av(a, v)
                    # Calculate linear response
                    self.response_calc(self.perturbation)

                    # Calculate row of the matrix of force constants
                    self.dyn.calculate_row(self.perturbation,
                                           self.response_calc)

                    # Write force constants to file
                    if self.comm.rank == 0:
                        self.dyn.write(fd, q, a, v)
                        fd.close()

                    # Store effective potential derivative
                    if self.e_ph is not None:
                        v1_eff_G = self.perturbation.v1_G + \
                            self.response_calc.vHXC1_G
                        self.e_ph.v1_eff_qavG.append(v1_eff_G)

                    # Wait for the file-writing rank here
                    self.comm.barrier()

        # XXX
        # Check that all files are valid and collect in a single file
        # Remove the files
        if clean:
            self.clean()

    def get_atoms(self):
        """Return atoms."""

        return self.atoms

    def get_dynamical_matrix(self):
        """Return reference to ``dyn`` attribute."""

        return self.dyn

    def get_filename_string(self):
        """Return string template for force constant filenames."""

        name_str = (self.name + '.' +
                    'q_%%0%ii_' % len(str(self.kd.nibzkpts)) +
                    'a_%%0%ii_' % len(str(len(self.atoms))) + 'v_%i' + '.pckl')

        return name_str

    def set_atoms(self, atoms):
        """Set atoms to be included in the calculation.

        Parameters
        ----------
        atoms: list
            Can be either a list of strings, ints or ...
        """

        assert isinstance(atoms, list)

        if isinstance(atoms[0], str):
            assert np.all([isinstance(atom, str) for atom in atoms])
            sym_a = self.atoms.get_chemical_symbols()
            # List for atomic indices
            indices = []
            for type in atoms:
                indices.extend(
                    [a for a, atom in enumerate(sym_a) if atom == type])
        else:
            assert np.all([isinstance(atom, int) for atom in atoms])
            indices = atoms

        self.dyn.set_indices(indices)

    def set_name_and_path(self, name=None, path=None):
        """Set name and path of the force constant files.

        name: str
            Base name for the files which the elements of the matrix of force
            constants will be written to.
        path: str
            Path specifying the directory where the files will be dumped.
        """

        if name is None:
            self.name = 'phonon.' + self.atoms.get_chemical_formula()
        else:
            self.name = name
        # self.name += '.nibzkpts_%i' % self.kd.nibzkpts

        if path is None:
            self.path = '.'
        else:
            self.path = path

        # Set corresponding attributes in the ``dyn`` attribute
        filename_str = self.get_filename_string()
        self.dyn.set_name_and_path(filename_str, self.path)

    def clean(self):
        """Delete generated files."""

        filename_str = self.get_filename_string()

        for q in range(self.kd.nibzkpts):
            for a in range(len(self.atoms)):
                for v in [0, 1, 2]:
                    filename = filename_str % (q, a, v)
                    if os.path.isfile(os.path.join(self.path, filename)):
                        os.remove(filename)

    def band_structure(self, path_kc, modes=False, acoustic=True):
        """Calculate phonon dispersion along a path in the Brillouin zone.

        The dynamical matrix at arbitrary q-vectors is obtained by Fourier
        transforming the real-space matrix. In case of negative eigenvalues
        (squared frequency), the corresponding negative frequency is returned.

        Parameters
        ----------
        path_kc: ndarray
            List of k-point coordinates (in units of the reciprocal lattice
            vectors) specifying the path in the Brillouin zone for which the
            dynamical matrix will be calculated.
        modes: bool
            Returns both frequencies and modes (mass scaled) when True.
        acoustic: bool
            Restore the acoustic sum-rule in the calculated force constants.
        """

        for k_c in path_kc:
            assert np.all(np.asarray(k_c) <= 1.0), \
                "Scaled coordinates must be given"

        # Assemble the dynanical matrix from calculated force constants
        self.dyn.assemble(acoustic=acoustic)
        # Get the dynamical matrix in real-space
        DR_lmn, R_clmn = self.dyn.real_space()

        # Reshape for the evaluation of the fourier sums
        shape = DR_lmn.shape
        DR_m = DR_lmn.reshape((-1, ) + shape[-2:])
        R_cm = R_clmn.reshape((3, -1))

        # Lists for frequencies and modes along path
        omega_kn = []
        u_kn = []
        # Number of atoms included
        N = len(self.dyn.get_indices())

        # Mass prefactor for the normal modes
        m_inv_av = self.dyn.get_mass_array()

        for q_c in path_kc:

            # Evaluate fourier transform
            phase_m = np.exp(-2.j * pi * np.dot(q_c, R_cm))
            # Dynamical matrix in unit of Ha / Bohr**2 / amu
            D_q = np.sum(phase_m[:, np.newaxis, np.newaxis] * DR_m, axis=0)

            if modes:
                omega2_n, u_avn = la.eigh(D_q, UPLO='L')
                # Sort eigenmodes according to eigenvalues (see below) and
                # multiply with mass prefactor
                u_nav = u_avn[:, omega2_n.argsort()].T.copy() * m_inv_av
                # Multiply with mass prefactor
                u_kn.append(u_nav.reshape((3 * N, -1, 3)))
            else:
                omega2_n = la.eigvalsh(D_q, UPLO='L')

            # Sort eigenvalues in increasing order
            omega2_n.sort()
            # Use dtype=complex to handle negative eigenvalues
            omega_n = np.sqrt(omega2_n.astype(complex))

            # Take care of imaginary frequencies
            if not np.all(omega2_n >= 0.):
                indices = np.where(omega2_n < 0)[0]
                print(("WARNING, %i imaginary frequencies at "
                       "q = (% 5.2f, % 5.2f, % 5.2f) ; (omega_q =% 5.3e*i)" %
                       (len(indices), q_c[0], q_c[1], q_c[2],
                        omega_n[indices][0].imag)))

                omega_n[indices] = -1 * np.sqrt(np.abs(omega2_n[indices].real))

            omega_kn.append(omega_n.real)

        # Conversion factor from sqrt(Ha / Bohr**2 / amu) -> eV
        s = units.Hartree**0.5 * units._hbar * 1.e10 / \
            (units._e * units._amu)**(0.5) / units.Bohr
        # Convert to eV and Ang
        omega_kn = s * np.asarray(omega_kn)
        if modes:
            u_kn = np.asarray(u_kn) * units.Bohr
            return omega_kn, u_kn

        return omega_kn

    def write_modes(self,
                    q_c,
                    branches=0,
                    kT=units.kB * 300,
                    repeat=(1, 1, 1),
                    nimages=30,
                    acoustic=True):
        """Write mode to trajectory file.

        The classical equipartioning theorem states that each normal mode has
        an average energy::

            <E> = 1/2 * k_B * T = 1/2 * omega^2 * Q^2

                =>

              Q = sqrt(k_B*T) / omega

        at temperature T. Here, Q denotes the normal coordinate of the mode.

        Parameters
        ----------
        q_c: ndarray
            q-vector of the modes.
        branches: int or list
            Branch index of calculated modes.
        kT: float
            Temperature in units of eV. Determines the amplitude of the atomic
            displacements in the modes.
        repeat: tuple
            Repeat atoms (l, m, n) times in the directions of the lattice
            vectors. Displacements of atoms in repeated cells carry a Bloch
            phase factor given by the q-vector and the cell lattice vector R_m.
        nimages: int
            Number of images in an oscillation.

        """

        if isinstance(branches, int):
            branch_n = [branches]
        else:
            branch_n = list(branches)

        # Calculate modes
        omega_n, u_n = self.band_structure([q_c],
                                           modes=True,
                                           acoustic=acoustic)

        # Repeat atoms
        atoms = self.atoms * repeat
        pos_mav = atoms.positions.copy()
        # Total number of unit cells
        M = np.prod(repeat)

        # Corresponding lattice vectors R_m
        R_cm = np.indices(repeat[::-1]).reshape(3, -1)[::-1]
        # Bloch phase
        phase_m = np.exp(2.j * pi * np.dot(q_c, R_cm))
        phase_ma = phase_m.repeat(len(self.atoms))

        for n in branch_n:
            omega = omega_n[0, n]
            u_av = u_n[0, n]  # .reshape((-1, 3))
            # Mean displacement at high T ?
            u_av *= sqrt(kT / abs(omega))

            mode_av = np.zeros((len(self.atoms), 3), dtype=self.dtype)
            indices = self.dyn.get_indices()
            mode_av[indices] = u_av
            mode_mav = (np.vstack([mode_av] * M) *
                        phase_ma[:, np.newaxis]).real

            traj = Trajectory('%s.mode.%d.traj' % (self.name, n), 'w')

            for x in np.linspace(0, 2 * pi, nimages, endpoint=False):
                # XXX Is it correct to take out the sine component here ?
                atoms.set_positions(pos_mav + sin(x) * mode_mav)
                traj.write(atoms)

            traj.close()
Пример #41
0
    def initialize(self, density, hamiltonian, wfs, occupations):
        self.xc.initialize(density, hamiltonian, wfs, occupations)
        self.nspins = wfs.nspins
        self.setups = wfs.setups
        self.density = density
        self.kpt_u = wfs.kpt_u
        self.wfs = wfs

        self.gd = density.gd
        self.kd = wfs.kd
        self.bd = wfs.bd

        N_c = self.gd.N_c
        N = self.gd.N_c.prod()
        vol = self.gd.dv * N

        if self.alpha is None:
            # XXX ?
            self.alpha = 6 * vol**(2 / 3.0) / pi**2

        self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) *
                      self.kd.nbzkpts)

        if self.ecut is None:
            self.ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max() * 0.9999

        assert self.kd.N_c is not None
        n = self.kd.N_c * 2 - 1
        bzk_kc = np.indices(n).transpose((1, 2, 3, 0))
        bzk_kc.shape = (-1, 3)
        bzk_kc -= self.kd.N_c - 1
        self.bzk_kc = bzk_kc.astype(float) / self.kd.N_c

        self.bzq_qc = self.kd.get_bz_q_points()
        if self.qsym:
            op_scc = self.kd.symmetry.op_scc
            self.ibzq_qc = self.kd.get_ibz_q_points(self.bzq_qc, op_scc)[0]
            self.q_weights = self.kd.q_weights * len(self.bzq_qc)
        else:
            self.ibzq_qc = self.bzq_qc
            self.q_weights = np.ones(len(self.bzq_qc))

        self.pwd = PWDescriptor(self.ecut, self.gd, complex)
        self.G2_qG = self.pwd.g2(self.bzk_kc)

        n = 0
        for k_c, Gpk2_G in zip(self.bzk_kc[:], self.G2_qG):
            if (k_c > -0.5).all() and (k_c <= 0.5).all():  #XXX???
                if k_c.any():
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G),
                                         Gpk2_G**-1)
                else:
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G[1:]),
                                         Gpk2_G[1:]**-1)
                n += 1

        assert n == self.kd.N_c.prod()

        self.pwd = PWDescriptor(self.ecut, self.gd, complex)
        self.G2_qG = self.pwd.g2(self.ibzq_qc)

        self.ghat = LFC(self.gd, [setup.ghat_l for setup in density.setups],
                        KPointDescriptor(self.bzq_qc),
                        dtype=complex)

        #self.interpolator = density.interpolator
        self.print_initialization(hamiltonian.xc.name)
Пример #42
0
    def __init__(self,
                 calc,
                 gamma=True,
                 symmetry=False,
                 e_ph=False,
                 communicator=serial_comm):
        """Inititialize class with a list of atoms.

        The atoms object must contain a converged ground-state calculation.

        The set of q-vectors in which the dynamical matrix will be calculated
        is determined from the ``symmetry`` kwarg. For now, only time-reversal
        symmetry is used to generate the irrecducible BZ.

        Add a little note on parallelization strategy here.

        Parameters
        ----------
        calc: str or Calculator
            Calculator containing a ground-state calculation.
        gamma: bool
            Gamma-point calculation with respect to the q-vector of the
            dynamical matrix. When ``False``, the Monkhorst-Pack grid from the
            ground-state calculation is used.
        symmetry: bool
            Use symmetries to reduce the q-vectors of the dynamcial matrix
            (None, False or True). The different options are equivalent to the
            old style options in a ground-state calculation (see usesymm).
        e_ph: bool
            Save the derivative of the effective potential.
        communicator: Communicator
            Communicator for parallelization over k-points and real-space
            domain.
        """

        # XXX
        assert symmetry in [None, False], "Spatial symmetries not allowed yet"

        if isinstance(calc, str):
            self.calc = GPAW(calc, communicator=serial_comm, txt=None)
        else:
            self.calc = calc

        cell_cv = self.calc.atoms.get_cell()
        setups = self.calc.wfs.setups
        # XXX - no clue how to get magmom - ignore it for the moment
        # m_av = magmom_av.round(decimals=3)  # round off
        # id_a = zip(setups.id_a, *m_av.T)
        id_a = setups.id_a

        if symmetry is None:
            self.symmetry = Symmetry(id_a,
                                     cell_cv,
                                     point_group=False,
                                     time_reversal=False)
        else:
            self.symmetry = Symmetry(id_a,
                                     cell_cv,
                                     point_group=False,
                                     time_reversal=True)

        # Make sure localized functions are initialized
        self.calc.set_positions()
        # Note that this under some circumstances (e.g. when called twice)
        # allocates a new array for the P_ani coefficients !!

        # Store useful objects
        self.atoms = self.calc.get_atoms()
        # Get rid of ``calc`` attribute
        self.atoms.calc = None

        # Boundary conditions
        pbc_c = self.calc.atoms.get_pbc()

        if np.all(pbc_c == False):
            self.gamma = True
            self.dtype = float
            kpts = None
            # Multigrid Poisson solver
            poisson_solver = PoissonSolver()
        else:
            if gamma:
                self.gamma = True
                self.dtype = float
                kpts = None
            else:
                self.gamma = False
                self.dtype = complex
                # Get k-points from ground-state calculation
                kpts = self.calc.input_parameters.kpts

            # FFT Poisson solver
            poisson_solver = FFTPoissonSolver(dtype=self.dtype)

        # K-point descriptor for the q-vectors of the dynamical matrix
        # Note, no explicit parallelization here.
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.symmetry)
        self.kd.set_communicator(serial_comm)

        # Number of occupied bands
        nvalence = self.calc.wfs.nvalence
        nbands = nvalence // 2 + nvalence % 2
        assert nbands <= self.calc.wfs.bd.nbands

        # Extract other useful objects
        # Ground-state k-point descriptor - used for the k-points in the
        # ResponseCalculator
        # XXX replace communicators when ready to parallelize
        kd_gs = self.calc.wfs.kd
        gd = self.calc.density.gd
        kpt_u = self.calc.wfs.kpt_u
        setups = self.calc.wfs.setups
        dtype_gs = self.calc.wfs.dtype

        # WaveFunctions
        wfs = WaveFunctions(nbands, kpt_u, setups, kd_gs, gd, dtype=dtype_gs)

        # Linear response calculator
        self.response_calc = ResponseCalculator(self.calc,
                                                wfs,
                                                dtype=self.dtype)

        # Phonon perturbation
        self.perturbation = PhononPerturbation(self.calc,
                                               self.kd,
                                               poisson_solver,
                                               dtype=self.dtype)

        # Dynamical matrix
        self.dyn = DynamicalMatrix(self.atoms, self.kd, dtype=self.dtype)

        # Electron-phonon couplings
        if e_ph:
            self.e_ph = ElectronPhononCoupling(self.atoms,
                                               gd,
                                               self.kd,
                                               dtype=self.dtype)
        else:
            self.e_ph = None

        # Initialization flag
        self.initialized = False

        # Parallel communicator for parallelization over kpts and domain
        self.comm = communicator
Пример #43
0
class HybridXC(XCFunctional):
    orbital_dependent = True
    def __init__(self, name, hybrid=None, xc=None, finegrid=False,
                 alpha=None):
        """Mix standard functionals with exact exchange.

        name: str
            Name of hybrid functional.
        hybrid: float
            Fraction of exact exchange.
        xc: str or XCFunctional object
            Standard DFT functional with scaled down exchange.
        finegrid: boolean
            Use fine grid for energy functional evaluations?
        """

        if name == 'EXX':
            assert hybrid is None and xc is None
            hybrid = 1.0
            xc = XC(XCNull())
        elif name == 'PBE0':
            assert hybrid is None and xc is None
            hybrid = 0.25
            xc = XC('HYB_GGA_XC_PBEH')
        elif name == 'B3LYP':
            assert hybrid is None and xc is None
            hybrid = 0.2
            xc = XC('HYB_GGA_XC_B3LYP')
            
        if isinstance(xc, str):
            xc = XC(xc)

        self.hybrid = hybrid
        self.xc = xc
        self.type = xc.type
        self.alpha = alpha
        self.exx = 0.0
        
        XCFunctional.__init__(self, name)

    def get_setup_name(self):
        return 'PBE'

    def calculate_radial(self, rgd, n_sLg, Y_L, v_sg,
                         dndr_sLg=None, rnablaY_Lv=None,
                         tau_sg=None, dedtau_sg=None):
        return self.xc.calculate_radial(rgd, n_sLg, Y_L, v_sg,
                                        dndr_sLg, rnablaY_Lv)
    
    def initialize(self, density, hamiltonian, wfs, occupations):
        self.xc.initialize(density, hamiltonian, wfs, occupations)
        self.nspins = wfs.nspins
        self.setups = wfs.setups
        self.density = density
        self.kpt_u = wfs.kpt_u
        
        self.gd = density.gd
        self.kd = wfs.kd
        self.bd = wfs.bd

        N_c = self.gd.N_c
        N = self.gd.N_c.prod()
        vol = self.gd.dv * N
        
        if self.alpha is None:
            self.alpha = 6 * vol**(2 / 3.0) / pi**2
            
        self.gamma = (vol / (2 * pi)**2 * sqrt(pi / self.alpha) *
                      self.kd.nbzkpts)
        ecut = 0.5 * pi**2 / (self.gd.h_cv**2).sum(1).max()

        if self.kd.N_c is None:
            self.bzk_kc = np.zeros((1, 3))
            dfghdfgh
        else:
            n = self.kd.N_c * 2 - 1
            bzk_kc = np.indices(n).transpose((1, 2, 3, 0))
            bzk_kc.shape = (-1, 3)
            bzk_kc -= self.kd.N_c - 1
            self.bzk_kc = bzk_kc.astype(float) / self.kd.N_c
        
        self.pwd = PWDescriptor(ecut, self.gd, self.bzk_kc)

        n = 0
        for k_c, Gpk2_G in zip(self.bzk_kc[:], self.pwd.G2_qG):
            if (k_c > -0.5).all() and (k_c <= 0.5).all(): #XXX???
                if k_c.any():
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G),
                                         Gpk2_G**-1)
                else:
                    self.gamma -= np.dot(np.exp(-self.alpha * Gpk2_G[1:]),
                                         Gpk2_G[1:]**-1)
                n += 1

        assert n == self.kd.N_c.prod()
        
        self.ghat = LFC(self.gd,
                        [setup.ghat_l for setup in density.setups],
                        dtype=complex
                        )
        self.ghat.set_k_points(self.bzk_kc)
        
        self.fullkd = KPointDescriptor(self.kd.bzk_kc, nspins=1)
        class S:
            id_a = []
            def set_symmetry(self, s): pass
            
        self.fullkd.set_symmetry(Atoms(pbc=True), S(), False)
        self.fullkd.set_communicator(world)
        self.pt = LFC(self.gd, [setup.pt_j for setup in density.setups],
                      dtype=complex)
        self.pt.set_k_points(self.fullkd.ibzk_kc)

        self.interpolator = density.interpolator

    def set_positions(self, spos_ac):
        self.ghat.set_positions(spos_ac)
        self.pt.set_positions(spos_ac)
    
    def calculate(self, gd, n_sg, v_sg=None, e_g=None):
        # Normal XC contribution:
        exc = self.xc.calculate(gd, n_sg, v_sg, e_g)

        # Add EXX contribution:
        return exc + self.exx

    def calculate_exx(self):
        """Non-selfconsistent calculation."""

        kd = self.kd
        K = self.fullkd.nibzkpts
        assert self.nspins == 1
        Q = K // world.size
        assert Q * world.size == K
        parallel = (world.size > self.nspins)
        
        self.exx = 0.0
        self.exx_skn = np.zeros((self.nspins, K, self.bd.nbands))

        kpt_u = []
        for k in range(world.rank * Q, (world.rank + 1) * Q):
            k_c = self.fullkd.ibzk_kc[k]
            for k1, k1_c in enumerate(kd.bzk_kc):
                if abs(k1_c - k_c).max() < 1e-10:
                    break
                
            # Index of symmetry related point in the irreducible BZ
            ik = kd.kibz_k[k1]
            kpt = self.kpt_u[ik]

            # KPoint from ground-state calculation
            phase_cd = np.exp(2j * pi * self.gd.sdisp_cd * k_c[:, np.newaxis])
            kpt2 = KPoint0(kpt.weight, kpt.s, k, None, phase_cd)
            kpt2.psit_nG = np.empty_like(kpt.psit_nG)
            kpt2.f_n = kpt.f_n / kpt.weight / K * 2
            for n, psit_G in enumerate(kpt2.psit_nG):
                psit_G[:] = kd.transform_wave_function(kpt.psit_nG[n], k1)

            kpt2.P_ani = self.pt.dict(len(kpt.psit_nG))
            self.pt.integrate(kpt2.psit_nG, kpt2.P_ani, k)
            kpt_u.append(kpt2)

        for s in range(self.nspins):
            kpt1_q = [KPoint(self.fullkd, kpt) for kpt in kpt_u if kpt.s == s]
            kpt2_q = kpt1_q[:]

            if len(kpt1_q) == 0:
                # No s-spins on this CPU:
                continue

            # Send rank:
            srank = self.fullkd.get_rank_and_index(s, (kpt1_q[0].k - 1) % K)[0]

            # Receive rank:
            rrank = self.fullkd.get_rank_and_index(s, (kpt1_q[-1].k + 1) % K)[0]

            # Shift k-points K // 2 times:
            for i in range(K // 2 + 1):
                if i < K // 2:
                    if parallel:
                        kpt = kpt2_q[-1].next()
                        kpt.start_receiving(rrank)
                        kpt2_q[0].start_sending(srank)
                    else:
                        kpt = kpt2_q[0]

                for kpt1, kpt2 in zip(kpt1_q, kpt2_q):
                    if 2 * i == K:
                        self.apply(kpt1, kpt2, invert=(kpt1.k > kpt2.k))
                    else:
                        self.apply(kpt1, kpt2)
                        self.apply(kpt1, kpt2, invert=True)

                if i < K // 2:
                    if parallel:
                        kpt.wait()
                        kpt2_q[0].wait()
                    kpt2_q.pop(0)
                    kpt2_q.append(kpt)
            
        self.exx = world.sum(self.exx)
        world.sum(self.exx_skn)
        self.exx += self.calculate_paw_correction()
        
    def apply(self, kpt1, kpt2, invert=False):
        #print world.rank,kpt1.k,kpt2.k,invert
        k1_c = self.fullkd.ibzk_kc[kpt1.k]
        k2_c = self.fullkd.ibzk_kc[kpt2.k]
        if invert:
            k2_c = -k2_c
        k12_c = k1_c - k2_c
        N_c = self.gd.N_c
        eikr_R = np.exp(2j * pi * np.dot(np.indices(N_c).T, k12_c / N_c).T)

        for q, k_c in enumerate(self.bzk_kc):
            if abs(k_c + k12_c).max() < 1e-9:
                q0 = q
                break

        for q, k_c in enumerate(self.bzk_kc):
            if abs(k_c - k12_c).max() < 1e-9:
                q00 = q
                break

        Gpk2_G = self.pwd.G2_qG[q0]
        if Gpk2_G[0] == 0:
            Gpk2_G = Gpk2_G.copy()
            Gpk2_G[0] = 1.0 / self.gamma

        N = N_c.prod()
        vol = self.gd.dv * N
        nspins = self.nspins

        same = (kpt1.k == kpt2.k)
        
        for n1, psit1_R in enumerate(kpt1.psit_nG):
            f1 = kpt1.f_n[n1]
            for n2, psit2_R in enumerate(kpt2.psit_nG):
                if same and n2 > n1:
                    continue
                
                f2 = kpt2.f_n[n2]

                nt_R = self.calculate_pair_density(n1, n2, kpt1, kpt2, q0,
                                                   invert)
                                                   
                nt_G = self.pwd.fft(nt_R * eikr_R) / N
                vt_G = nt_G.copy()
                vt_G *= -pi * vol / Gpk2_G
                e = np.vdot(nt_G, vt_G).real * nspins * self.hybrid
                if same and n1 == n2:
                    e /= 2
                    
                self.exx += e * f1 * f2
                self.ekin -= 2 * e * f1 * f2
                self.exx_skn[kpt1.s, kpt1.k, n1] += f2 * e
                self.exx_skn[kpt2.s, kpt2.k, n2] += f1 * e

                calculate_potential = not True
                if calculate_potential:
                    vt_R = self.pwd.ifft(vt_G).conj() * eikr_R * N / vol
                    if kpt1 is kpt2 and not invert and n1 == n2:
                        kpt1.vt_nG[n1] = 0.5 * f1 * vt_R

                    if invert:
                        kpt1.Htpsit_nG[n1] += \
                                           f2 * nspins * psit2_R.conj() * vt_R
                    else:
                        kpt1.Htpsit_nG[n1] += f2 * nspins * psit2_R * vt_R

                    if kpt1 is not kpt2:
                        if invert:
                            kpt2.Htpsit_nG[n2] += (f1 * nspins *
                                                   psit1_R.conj() * vt_R)
                        else:
                            kpt2.Htpsit_nG[n2] += (f1 * nspins *
                                                   psit1_R * vt_R.conj())

    def calculate_paw_correction(self):
        exx = 0
        deg = 2 // self.nspins  # spin degeneracy
        for a, D_sp in self.density.D_asp.items():
            setup = self.setups[a]
            for D_p in D_sp:
                D_ii = unpack2(D_p)
                ni = len(D_ii)

                for i1 in range(ni):
                    for i2 in range(ni):
                        A = 0.0
                        for i3 in range(ni):
                            p13 = packed_index(i1, i3, ni)
                            for i4 in range(ni):
                                p24 = packed_index(i2, i4, ni)
                                A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                        p12 = packed_index(i1, i2, ni)
                        exx -= self.hybrid / deg * D_ii[i1, i2] * A

                if setup.X_p is not None:
                    exx -= self.hybrid * np.dot(D_p, setup.X_p)
            exx += self.hybrid * setup.ExxC
        return exx
    
    def calculate_pair_density(self, n1, n2, kpt1, kpt2, q, invert):
        if invert:
            nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2].conj()
        else:
            nt_G = kpt1.psit_nG[n1].conj() * kpt2.psit_nG[n2]

        Q_aL = {}
        for a, P1_ni in kpt1.P_ani.items():
            P1_i = P1_ni[n1]
            P2_i = kpt2.P_ani[a][n2]
            if invert:
                D_ii = np.outer(P1_i.conj(), P2_i.conj())
            else:
                D_ii = np.outer(P1_i.conj(), P2_i)
            D_p = pack(D_ii)
            Q_aL[a] = np.dot(D_p, self.setups[a].Delta_pL)

        self.ghat.add(nt_G, Q_aL, q)
        return nt_G
Пример #44
0
    def __init__(self, calc, nbands=None, Fock=False):
        self.calc = calc
        self.Fock = Fock
        self.K = calc.get_ibz_k_points()  # reduced Brillioun zone
        self.NK = self.K.shape[0]

        self.wk = calc.get_k_point_weights(
        )  # weight of reduced Brillioun zone
        if nbands is None:
            self.nbands = calc.get_number_of_bands()
        else:
            self.nbands = nbands
        self.nvalence = int(calc.get_number_of_electrons() / 2)

        self.EK = [
            calc.get_eigenvalues(k)[:self.nbands] for k in range(self.NK)
        ]  # bands energy
        self.EK = np.array(self.EK) / Hartree
        self.shape = tuple(
            calc.get_number_of_grid_points())  # shape of real space grid
        self.density = calc.get_pseudo_density(
        ) * Bohr**3  # density at zero time

        # array of u_nk (periodic part of Kohn-Sham orbitals,only reduced Brillion zone)
        self.ukn = np.zeros((
            self.NK,
            self.nbands,
        ) + self.shape,
                            dtype=np.complex)
        for k in range(self.NK):
            kpt = calc.wfs.kpt_u[k]
            for n in range(self.nbands):
                psit_G = kpt.psit_nG[n]
                psit_R = calc.wfs.pd.ifft(psit_G, kpt.q)
                self.ukn[k, n] = psit_R

        self.icell = 2.0 * np.pi * calc.wfs.gd.icell_cv  # inverse cell
        self.cell = calc.wfs.gd.cell_cv  # cell
        self.r = calc.wfs.gd.get_grid_point_coordinates()
        for i in range(3):
            self.r[i] -= self.cell[i, i] / 2.
        self.volume = np.abs(np.linalg.det(
            calc.wfs.gd.cell_cv))  # volume of cell
        self.norm = calc.wfs.gd.dv  #
        self.Fermi = calc.get_fermi_level() / Hartree  #Fermi level

        #desriptors at q=gamma for Hartree
        self.kdH = KPointDescriptor([[0, 0, 0]])
        self.pdH = PWDescriptor(ecut=calc.wfs.pd.ecut,
                                gd=calc.wfs.gd,
                                kd=self.kdH,
                                dtype=complex)

        #desriptors at q=gamma for Fock
        self.kdF = KPointDescriptor([[0, 0, 0]])
        self.pdF = PWDescriptor(ecut=calc.wfs.pd.ecut / 4.,
                                gd=calc.wfs.gd,
                                kd=self.kdF,
                                dtype=complex)

        #Fermi-Dirac temperature
        self.temperature = calc.occupations.width

        #calculate pair-density matrices
        if Fock:
            self.M = np.zeros((self.nbands, self.nbands, self.NK, self.NK,
                               self.pdF.get_reciprocal_vectors().shape[0]),
                              dtype=np.complex)
            indexes = [(n, k)
                       for n, k in product(range(self.nbands), range(self.NK))]
            for i1 in range(len(indexes)):
                n1, k1 = indexes[i1]
                for i2 in range(i1, len(indexes)):
                    n2, k2 = indexes[i1]
                    self.M[n1, n2, k1, k2] = self.pdF.fft(
                        self.ukn[k1, n1].conj() * self.ukn[k2, n2])
                    self.M[n2, n1, k2, k1] = self.M[n1, n2, k1, k2].conj()
            self.M *= calc.wfs.gd.dv

        #Fermi-Dirac distribution
        self.f = 1 / (1 + np.exp((self.EK - self.Fermi) / self.temperature))

        self.Hartree_elements = np.zeros(
            (self.NK, self.nbands, self.NK, self.nbands, self.nbands),
            dtype=np.complex)
        self.LDAx_elements = np.zeros(
            (self.NK, self.nbands, self.NK, self.nbands, self.nbands),
            dtype=np.complex)
        self.LDAc_elements = np.zeros(
            (self.NK, self.nbands, self.NK, self.nbands, self.nbands),
            dtype=np.complex)
        G = self.pdH.get_reciprocal_vectors()
        G2 = np.linalg.norm(G, axis=1)**2
        G2[G2 == 0] = np.inf
        matrix = np.zeros((self.NK, self.nbands, self.nbands),
                          dtype=np.complex)
        for k in tqdm(range(self.NK)):
            for n in range(self.nbands):
                density = 2 * np.abs(self.ukn[k, n])**2
                operator = xc.VLDAx(density)
                self.LDAx_elements[k, n] = operator_matrix_periodic(
                    matrix, operator, self.ukn.conj(), self.ukn) * self.norm
                operator = xc.VLDAc(density)
                self.LDAc_elements[k, n] = operator_matrix_periodic(
                    matrix, operator, self.ukn.conj(), self.ukn) * self.norm

                density = self.pdH.fft(density)
                operator = 4 * np.pi * self.pdH.ifft(density / G2)
                self.Hartree_elements[k, n] = operator_matrix_periodic(
                    matrix, operator, self.ukn.conj(), self.ukn) * self.norm

        self.wavefunction = np.zeros((self.NK, self.nbands, self.nbands),
                                     dtype=np.complex)
        self.Kinetic = np.zeros((self.NK, self.nbands, self.nbands),
                                dtype=np.complex)
        self.dipole = self.get_dipole_matrix()
        for k in range(self.NK):
            self.wavefunction[k] = np.eye(self.nbands)
            self.Kinetic[k] = np.diag(self.EK[k])
        self.VH0 = self.get_Hartree_matrix(self.wavefunction)
        self.VLDAc0 = self.get_LDA_correlation_matrix(self.wavefunction)
        self.VLDAx0 = self.get_LDA_exchange_matrix(self.wavefunction)

        self.Full_BZ = calc.get_bz_k_points()
        self.IBZ_map = calc.get_bz_to_ibz_map()
Пример #45
0
    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        self.set_text(par.txt, par.verbose)

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        # Generate new xc functional only when it is reset by set
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if xc.orbital_dependent and mode == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if mode == 'pw':
            mode = PW()

        if mode == 'fd' and par.usefractrans:
            raise NotImplementedError('FD mode does not support '
                                      'fractional translations.')
        
        if mode == 'lcao' and par.usefractrans:
            raise Warning('Fractional translations have not been tested '
                          'with LCAO mode. Use with care!')

        if par.realspace is None:
            realspace = not isinstance(mode, PW)
        else:
            realspace = par.realspace
            if isinstance(mode, PW):
                assert not realspace

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace)

        if par.filter is None and not isinstance(mode, PW):
            gamma = 1.6
            hmax = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5 / N_c).max()
            
            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / hmax - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc,
                        filter, world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False
            
        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))
            
        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        # K-point descriptor
        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear, par.usefractrans)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None
      
        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        ## rbw: If usefractrans=True, kd.set_symmetry might overwrite N_c.
        ## This is necessary, because N_c must be dividable by 1/(fractional translation),
        ## f.e. fractional translations of a grid point must land on a grid point.
        N_c = kd.set_symmetry(atoms, setups, magmom_av, par.usesymm, N_c, world)

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v)**0.5
        
        nbands = par.nbands
        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()
                
                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.'
                                     % (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d'
                             % (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                self.occupations = occupations.FermiDirac(width, par.fixmom)
            else:
                self.occupations = par.occupations

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            self.scf = SCFLoop(
                cc['eigenstates'] / Hartree**2 * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world,
                                                  nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if isinstance(mode, PW):
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            domain_comm, kpt_comm, band_comm = \
                parallelization.build_communicators()

            #domain_comm, kpt_comm, band_comm = mpi.distribute_cpus(
            #    parsize_domain, parsize_bands,
            #    nspins, kd.nibzkpts, world, par.idiotproof, mode)

            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError('Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically
                
                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1
                
                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, dtype,
                                               nao=nao, timer=self.timer)

                if collinear:
                    self.wfs = LCAOWaveFunctions(lcaoksl, *args)
                else:
                    from gpaw.xc.noncollinear import \
                         NonCollinearLCAOWaveFunctions
                    self.wfs = NonCollinearLCAOWaveFunctions(lcaoksl, *args)

            elif mode == 'fd' or isinstance(mode, PW):
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',
                                               gd, bd, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                                   gd, lcaobd, dtype,
                                                   nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(par.stencils[0],
                        diagksl, orthoksl, initksl, gd, nvalence, setups,
                        bd, world, kd, self.timer)
                elif mode == 'fd':
                    self.wfs = FDWaveFunctions(par.stencils[0], diagksl,
                                               orthoksl, initksl, *args)
                else:
                    # Planewave basis:
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc, par.external,
                    collinear, par.poissonsolver, par.stencils[1], world)
            else:
                self.hamiltonian = ReciprocalSpaceHamiltonian(
                    gd, finegd,
                    self.density.pd2, self.density.pd3,
                    nspins, setups, self.timer, xc, par.external,
                    collinear, world)
            
        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)
        
        if dry_run:
            self.dry_run()
        
        self.initialized = True
Пример #46
0
    def bloch_matrix(self, kpts, qpts, c_kn, u_ql, omega_ql=None, kpts_from=None):
        """Calculate el-ph coupling in the Bloch basis for the electrons.

        This function calculates the electron-phonon coupling between the
        specified Bloch states, i.e.::

                      ______ 
            mnl      / hbar               ^
           g    =   /-------  < m k + q | e  . grad V  | n k >
            kq    \/ 2 M w                 ql        q
                          ql

        In case the ``omega_ql`` keyword argument is not given, the bare matrix
        element (in units of eV / Ang) without the sqrt prefactor is returned. 
        
        Parameters
        ----------
        kpts: ndarray or tuple.
            k-vectors of the Bloch states. When a tuple of integers is given, a
            Monkhorst-Pack grid with the specified number of k-points along the
            directions of the reciprocal lattice vectors is generated.
        qpts: ndarray or tuple.
            q-vectors of the phonons.
        c_kn: ndarray
            Expansion coefficients for the Bloch states. The ordering must be
            the same as in the ``kpts`` argument.
        u_ql: ndarray
            Mass-scaled polarization vectors (in units of 1 / sqrt(amu)) of the
            phonons. Again, the ordering must be the same as in the
            corresponding ``qpts`` argument.
        omega_ql: ndarray
            Vibrational frequencies in eV. 
        kpts_from: list of ints or int
            Calculate only the matrix element for the k-vectors specified by
            their index in the ``kpts`` argument (default: all).

        In short, phonon frequencies and mode vectors must be given in ase units.

        """

        assert self.g_xNNMM is not None, "Load supercell matrix."
        assert len(c_kn.shape) == 3
        assert len(u_ql.shape) == 4
        if omega_ql is not None:
            assert np.all(u_ql.shape[:2] == omega_ql.shape[:2])

        # Translate k-points into 1. BZ (required by ``find_k_plus_q``` member
        # function of the ```KPointDescriptor``).
        if isinstance(kpts, np.ndarray):
            assert kpts.shape[1] == 3, "kpts_kc array must be given"
            # XXX This does not seem to cause problems!
            kpts -= kpts.round()
            
        # Use the KPointDescriptor to keep track of the k and q-vectors
        kd_kpts = KPointDescriptor(kpts)
        kd_qpts = KPointDescriptor(qpts)
        # Check that number of k- and q-points agree with the number of Bloch
        # functions and polarization vectors
        assert kd_kpts.nbzkpts == len(c_kn)
        assert kd_qpts.nbzkpts == len(u_ql)
        
        # Include all k-point per default
        if kpts_from is None:
            kpts_kc = kd_kpts.bzk_kc
            kpts_k = range(kd_kpts.nbzkpts)
        else:
            kpts_kc = kd_kpts.bzk_kc[kpts_from]
            if isinstance(kpts_from, int):
                kpts_k = list([kpts_from])
            else:
                kpts_k = list(kpts_from)

        # Supercell matrix (real matrix in Hartree / Bohr)
        g_xNNMM = self.g_xNNMM
        
        # Number of phonon modes and electronic bands
        nmodes = u_ql.shape[1]
        nbands = c_kn.shape[1]
        # Number of atoms displacements and basis functions
        ndisp = np.prod(u_ql.shape[2:])
        assert ndisp == (3 * len(self.indices))
        nao = c_kn.shape[2]
        assert ndisp == g_xNNMM.shape[0]
        assert nao == g_xNNMM.shape[-1]
        
        # Lattice vectors
        R_cN = self.lattice_vectors()
        # Number of unit cell in supercell
        N = np.prod(self.N_c)
        
        # Allocate array for couplings
        g_qklnn = np.zeros((kd_qpts.nbzkpts, len(kpts_kc), nmodes,
                            nbands, nbands), dtype=complex)
       
        self.timer.write_now("Calculating coupling matrix elements")
        for q, q_c in enumerate(kd_qpts.bzk_kc):

            # Find indices of k+q for the k-points
            kplusq_k = kd_kpts.find_k_plus_q(q_c, kpts_k=kpts_k)

            # Here, ``i`` is counting from 0 and ``k`` is the global index of
            # the k-point 
            for i, (k, k_c) in enumerate(zip(kpts_k, kpts_kc)):

                # Check the wave vectors (adapted to the ``KPointDescriptor`` class)
                kplusq_c = k_c + q_c
                kplusq_c -= kplusq_c.round()
                assert np.allclose(kplusq_c, kd_kpts.bzk_kc[kplusq_k[i]] ), \
                       (i, k, k_c, q_c, kd_kpts.bzk_kc[kplusq_k[i]])

                # Allocate array
                g_xMM = np.zeros((ndisp, nao, nao), dtype=complex)

                # Multiply phase factors
                for m in range(N):
                    for n in range(N):
                        Rm_c = R_cN[:, m]
                        Rn_c = R_cN[:, n]
                        phase = np.exp(2.j * pi * (np.dot(k_c, Rm_c - Rn_c)
                                                   + np.dot(q_c, Rm_c)))
                        # Sum contributions from different cells
                        g_xMM += g_xNNMM[:, m, n, :, :] * phase
                        
                # LCAO coefficient for Bloch states
                ck_nM = c_kn[k]
                ckplusq_nM = c_kn[kplusq_k[i]]
                # Mass scaled polarization vectors
                u_lx = u_ql[q].reshape(nmodes, 3 * len(self.atoms))

                g_nxn = np.dot(ckplusq_nM.conj(), np.dot(g_xMM, ck_nM.T))
                g_lnn = np.dot(u_lx, g_nxn)
                
                # Insert value
                g_qklnn[q, i] = g_lnn

                # XXX Temp
                if np.all(q_c == 0.0):
                    # These should be real
                    print g_qklnn[q].imag.min(), g_qklnn[q].imag.max()
                    
        self.timer.write_now("Finished calculation of coupling matrix elements")
                                                
        # Return the bare matrix element if frequencies are not given
        if omega_ql is None:
            # Convert to eV / Ang
            g_qklnn *= units.Hartree / units.Bohr
        else:
            # Multiply prefactor sqrt(hbar / 2 * M * omega) in units of Bohr
            amu = units._amu # atomic mass unit
            me = units._me   # electron mass
            g_qklnn /= np.sqrt(2 * amu / me / units.Hartree * \
                               omega_ql[:, np.newaxis, :, np.newaxis, np.newaxis])
            # Convert to eV
            g_qklnn *= units.Hartree
            
        # Return couplings in eV (or eV / Ang)
        return g_qklnn
Пример #47
0
    def __init__(self, calc, gamma=True, symmetry=False, e_ph=False,
                 communicator=serial_comm):
        """Inititialize class with a list of atoms.

        The atoms object must contain a converged ground-state calculation.

        The set of q-vectors in which the dynamical matrix will be calculated
        is determined from the ``symmetry`` kwarg. For now, only time-reversal
        symmetry is used to generate the irrecducible BZ.

        Add a little note on parallelization strategy here.

        Parameters
        ----------
        calc: str or Calculator
            Calculator containing a ground-state calculation.
        gamma: bool
            Gamma-point calculation with respect to the q-vector of the
            dynamical matrix. When ``False``, the Monkhorst-Pack grid from the
            ground-state calculation is used.
        symmetry: bool
            Use symmetries to reduce the q-vectors of the dynamcial matrix
            (None, False or True). The different options are equivalent to the
            options in a ground-state calculation.
        e_ph: bool
            Save the derivative of the effective potential.
        communicator: Communicator
            Communicator for parallelization over k-points and real-space
            domain.
            
        """

        # XXX
        assert symmetry in [None, False], "Spatial symmetries not allowed yet"

        self.symmetry = symmetry

        if isinstance(calc, str):
            self.calc = GPAW(calc, communicator=serial_comm, txt=None)
        else:
            self.calc = calc

        # Make sure localized functions are initialized
        self.calc.set_positions()
        # Note that this under some circumstances (e.g. when called twice)
        # allocates a new array for the P_ani coefficients !!

        # Store useful objects
        self.atoms = self.calc.get_atoms()
        # Get rid of ``calc`` attribute
        self.atoms.calc = None
 
        # Boundary conditions
        pbc_c = self.calc.atoms.get_pbc()

        if np.all(pbc_c == False):
            self.gamma = True
            self.dtype = float
            kpts = None
            # Multigrid Poisson solver
            poisson_solver = PoissonSolver()
        else:
            if gamma:
                self.gamma = True
                self.dtype = float
                kpts = None
            else:
                self.gamma = False
                self.dtype = complex
                # Get k-points from ground-state calculation
                kpts = self.calc.input_parameters.kpts
                
            # FFT Poisson solver
            poisson_solver = FFTPoissonSolver(dtype=self.dtype)

        # K-point descriptor for the q-vectors of the dynamical matrix
        # Note, no explicit parallelization here.
        self.kd = KPointDescriptor(kpts, 1)
        self.kd.set_symmetry(self.atoms, self.calc.wfs.setups,
                             usesymm=symmetry)
        self.kd.set_communicator(serial_comm)

        # Number of occupied bands
        nvalence = self.calc.wfs.nvalence
        nbands = nvalence / 2 + nvalence % 2
        assert nbands <= self.calc.wfs.bd.nbands

        # Extract other useful objects
        # Ground-state k-point descriptor - used for the k-points in the
        # ResponseCalculator
        # XXX replace communicators when ready to parallelize
        kd_gs = self.calc.wfs.kd
        gd = self.calc.density.gd
        kpt_u = self.calc.wfs.kpt_u
        setups = self.calc.wfs.setups
        dtype_gs = self.calc.wfs.dtype
        
        # WaveFunctions
        wfs = WaveFunctions(nbands, kpt_u, setups, kd_gs, gd, dtype=dtype_gs)

        # Linear response calculator
        self.response_calc = ResponseCalculator(self.calc, wfs,
                                                dtype=self.dtype)
        
        # Phonon perturbation
        self.perturbation = PhononPerturbation(self.calc, self.kd,
                                               poisson_solver,
                                               dtype=self.dtype)

        # Dynamical matrix
        self.dyn = DynamicalMatrix(self.atoms, self.kd, dtype=self.dtype)

        # Electron-phonon couplings
        if e_ph:
            self.e_ph = ElectronPhononCoupling(self.atoms, gd, self.kd,
                                               dtype=self.dtype)
        else:
            self.e_ph = None
                                               
        # Initialization flag
        self.initialized = False

        # Parallel communicator for parallelization over kpts and domain
        self.comm = communicator
Пример #48
0
    def __init__(self, calc, filename='gw',
                 kpts=None, bands=None, nbands=None, ppa=False,
                 wstc=False,
                 ecut=150.0, eta=0.1, E0=1.0 * Hartree,
                 domega0=0.025, omega2=10.0,
                 world=mpi.world):
    
        PairDensity.__init__(self, calc, ecut, world=world,
                             txt=filename + '.txt')
        
        self.filename = filename
        
        ecut /= Hartree
        
        self.ppa = ppa
        self.wstc = wstc
        self.eta = eta / Hartree
        self.E0 = E0 / Hartree
        self.domega0 = domega0 / Hartree
        self.omega2 = omega2 / Hartree

        print('  ___  _ _ _ ', file=self.fd)
        print(' |   || | | |', file=self.fd)
        print(' | | || | | |', file=self.fd)
        print(' |__ ||_____|', file=self.fd)
        print(' |___|       ', file=self.fd)
        print(file=self.fd)

        self.kpts = select_kpts(kpts, self.calc)
                
        if bands is None:
            bands = [0, self.nocc2]
            
        self.bands = bands

        b1, b2 = bands
        self.shape = shape = (self.calc.wfs.nspins, len(self.kpts), b2 - b1)
        self.eps_sin = np.empty(shape)     # KS-eigenvalues
        self.f_sin = np.empty(shape)       # occupation numbers
        self.sigma_sin = np.zeros(shape)   # self-energies
        self.dsigma_sin = np.zeros(shape)  # derivatives of self-energies
        self.vxc_sin = None                # KS XC-contributions
        self.exx_sin = None                # exact exchange contributions
        self.Z_sin = None                  # renormalization factors
        
        if nbands is None:
            nbands = int(self.vol * ecut**1.5 * 2**0.5 / 3 / pi**2)
        self.nbands = nbands

        kd = self.calc.wfs.kd

        self.mysKn1n2 = None  # my (s, K, n1, n2) indices
        self.distribute_k_points_and_bands(b1, b2, kd.ibz2bz_k[self.kpts])
        
        # Find q-vectors and weights in the IBZ:
        assert -1 not in kd.bz2bz_ks
        offset_c = 0.5 * ((kd.N_c + 1) % 2) / kd.N_c
        bzq_qc = monkhorst_pack(kd.N_c) + offset_c
        self.qd = KPointDescriptor(bzq_qc)
        self.qd.set_symmetry(self.calc.atoms, self.calc.wfs.setups,
                             usesymm=self.calc.input_parameters.usesymm,
                             N_c=self.calc.wfs.gd.N_c)
        
        assert self.calc.wfs.nspins == 1
Пример #49
0
class UTDomainParallelSetup(TestCase):
    """
    Setup a simple domain parallel calculation."""

    # Number of bands
    nbands = 12

    # Spin-polarized
    nspins = 1

    # Mean spacing and number of grid points per axis (G x G x G)
    h = 0.25 / Bohr
    G = 48

    # Type of boundary conditions employed (determines nibzkpts and dtype)
    boundaries = None
    nibzkpts = None
    dtype = None

    timer = nulltimer

    def setUp(self):
        for virtvar in ['boundaries']:
            assert getattr(self,
                           virtvar) is not None, 'Virtual "%s"!' % virtvar

        # Basic unit cell information:
        res, N_c = shapeopt(100, self.G**3, 3, 0.2)
        #N_c = 4*np.round(np.array(N_c)/4) # makes domain decomposition easier
        cell_cv = self.h * np.diag(N_c)
        pbc_c = {'zero'    : (False,False,False), \
                 'periodic': (True,True,True), \
                 'mixed'   : (True, False, True)}[self.boundaries]

        # Create randomized gas-like atomic configuration on interim grid
        tmpgd = GridDescriptor(N_c, cell_cv, pbc_c)
        self.atoms = create_random_atoms(tmpgd)

        # Create setups
        Z_a = self.atoms.get_atomic_numbers()
        assert 1 == self.nspins
        self.setups = Setups(Z_a, p.setups, p.basis, p.lmax, xc)
        self.natoms = len(self.setups)

        # Decide how many kpoints to sample from the 1st Brillouin Zone
        kpts_c = np.ceil(
            (10 / Bohr) / np.sum(cell_cv**2, axis=1)**0.5).astype(int)
        kpts_c = tuple(kpts_c * pbc_c + 1 - pbc_c)
        self.bzk_kc = kpts2ndarray(kpts_c)

        # Set up k-point descriptor
        self.kd = KPointDescriptor(self.bzk_kc, self.nspins)
        self.kd.set_symmetry(self.atoms, self.setups, p.usesymm)

        # Set the dtype
        if self.kd.gamma:
            self.dtype = float
        else:
            self.dtype = complex

        # Create communicators
        parsize, parsize_bands = self.get_parsizes()
        assert self.nbands % np.prod(parsize_bands) == 0
        domain_comm, kpt_comm, band_comm = distribute_cpus(
            parsize, parsize_bands, self.nspins, self.kd.nibzkpts)

        self.kd.set_communicator(kpt_comm)

        # Set up band descriptor:
        self.bd = BandDescriptor(self.nbands, band_comm)

        # Set up grid descriptor:
        self.gd = GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize)

        # Set up kpoint/spin descriptor (to be removed):
        self.kd_old = KPointDescriptorOld(self.nspins, self.kd.nibzkpts,
                                          kpt_comm, self.kd.gamma, self.dtype)

    def tearDown(self):
        del self.atoms, self.bd, self.gd, self.kd, self.kd_old

    def get_parsizes(self):
        # Careful, overwriting imported GPAW params may cause amnesia in Python.
        from gpaw import parsize, parsize_bands

        # D: number of domains
        # B: number of band groups
        if parsize is None:
            D = min(world.size, 2)
        else:
            D = parsize
        assert world.size % D == 0
        if parsize_bands is None:
            B = world.size // D
        else:
            B = parsize_bands
        return D, B

    # =================================

    def verify_comm_sizes(self):
        if world.size == 1:
            return
        comm_sizes = tuple([comm.size for comm in [world, self.bd.comm, \
                                                   self.gd.comm, self.kd_old.comm]])
        self._parinfo = '%d world, %d band, %d domain, %d kpt' % comm_sizes
        self.assertEqual(self.nbands % self.bd.comm.size, 0)
        self.assertEqual(
            (self.nspins * self.kd.nibzkpts) % self.kd_old.comm.size, 0)
Пример #50
0
    def calculate_exx(self):
        """Non-selfconsistent calculation."""

        self.timer.start('EXX')
        self.timer.start('Initialization')

        kd = self.kd
        wfs = self.wfs

        if fftw.FFTPlan is fftw.NumpyFFTPlan:
            self.log('NOT USING FFTW !!')

        self.log('Spins:', self.wfs.nspins)

        W = max(1, self.wfs.kd.comm.size // self.wfs.nspins)
        # Are the k-points distributed?
        kparallel = (W > 1)

        # Find number of occupied bands:
        self.nocc_sk = np.zeros((self.wfs.nspins, kd.nibzkpts), int)
        for kpt in self.wfs.kpt_u:
            for n, f in enumerate(kpt.f_n):
                if abs(f) < self.fcut:
                    self.nocc_sk[kpt.s, kpt.k] = n
                    break
            else:
                self.nocc_sk[kpt.s, kpt.k] = self.wfs.bd.nbands
        self.wfs.kd.comm.sum(self.nocc_sk)

        noccmin = self.nocc_sk.min()
        noccmax = self.nocc_sk.max()
        self.log('Number of occupied bands (min, max): %d, %d' %
                 (noccmin, noccmax))

        self.log('Number of valence electrons:', self.wfs.setups.nvalence)

        if self.bandstructure:
            self.log('Calculating eigenvalue shifts.')

            # allocate array for eigenvalue shifts:
            self.exx_skn = np.zeros(
                (self.wfs.nspins, kd.nibzkpts, self.wfs.bd.nbands))

            if self.bands is None:
                noccmax = self.wfs.bd.nbands
            else:
                noccmax = max(max(self.bands) + 1, noccmax)

        N_c = self.kd.N_c

        vol = wfs.gd.dv * wfs.gd.N_c.prod()
        if self.alpha is None:
            alpha = 6 * vol**(2 / 3.0) / pi**2
        else:
            alpha = self.alpha
        if self.gamma_point == 1:
            if alpha == 0.0:
                qvol = (2 * np.pi)**3 / vol / N_c.prod()
                self.gamma = 4 * np.pi * (3 * qvol /
                                          (4 * np.pi))**(1 / 3.) / qvol
            else:
                self.gamma = self.calculate_gamma(vol, alpha)
        else:
            kcell_cv = wfs.gd.cell_cv.copy()
            kcell_cv[0] *= N_c[0]
            kcell_cv[1] *= N_c[1]
            kcell_cv[2] *= N_c[2]
            self.gamma = madelung(kcell_cv) * vol * N_c.prod() / (4 * np.pi)

        self.log('Value of alpha parameter: %.3f Bohr^2' % alpha)
        self.log('Value of gamma parameter: %.3f Bohr^2' % self.gamma)

        # Construct all possible q=k2-k1 vectors:
        Nq_c = (N_c - 1) // self.qstride_c
        i_qc = np.indices(Nq_c * 2 + 1, float).transpose((1, 2, 3, 0)).reshape(
            (-1, 3))
        self.bzq_qc = (i_qc - Nq_c) / N_c * self.qstride_c
        self.q0 = ((Nq_c * 2 + 1).prod() - 1) // 2  # index of q=(0,0,0)
        assert not self.bzq_qc[self.q0].any()

        # Count number of pairs for each q-vector:
        self.npairs_q = np.zeros(len(self.bzq_qc), int)
        for s in range(kd.nspins):
            for k1 in range(kd.nibzkpts):
                for k2 in range(kd.nibzkpts):
                    for K2, q, n1_n, n2 in self.indices(s, k1, k2):
                        self.npairs_q[q] += len(n1_n)

        self.npairs0 = self.npairs_q.sum()  # total number of pairs

        self.log('Number of pairs:', self.npairs0)

        # Distribute q-vectors to Q processors:
        Q = self.world.size // self.wfs.kd.comm.size
        myrank = self.world.rank // self.wfs.kd.comm.size
        rank = 0
        N = 0
        myq = []
        nq = 0
        for q, n in enumerate(self.npairs_q):
            if n > 0:
                nq += 1
                if rank == myrank:
                    myq.append(q)
            N += n
            if N >= (rank + 1.0) * self.npairs0 / Q:
                rank += 1

        assert len(myq) > 0, 'Too few q-vectors for too many processes!'
        self.bzq_qc = self.bzq_qc[myq]
        try:
            self.q0 = myq.index(self.q0)
        except ValueError:
            self.q0 = None

        self.log('%d x %d x %d k-points' % tuple(self.kd.N_c))
        self.log('Distributing %d IBZ k-points over %d process(es).' %
                 (kd.nibzkpts, self.wfs.kd.comm.size))
        self.log('Distributing %d q-vectors over %d process(es).' % (nq, Q))

        # q-point descriptor for my q-vectors:
        qd = KPointDescriptor(self.bzq_qc)

        # Plane-wave descriptor for all wave-functions:
        self.pd = PWDescriptor(wfs.pd.ecut, wfs.gd, dtype=wfs.pd.dtype, kd=kd)

        # Plane-wave descriptor pair-densities:
        self.pd2 = PWDescriptor(self.dens.pd2.ecut,
                                self.dens.gd,
                                dtype=wfs.dtype,
                                kd=qd)

        self.log('Cutoff energies:')
        self.log('    Wave functions:       %10.3f eV' %
                 (self.pd.ecut * Hartree))
        self.log('    Density:              %10.3f eV' %
                 (self.pd2.ecut * Hartree))

        # Calculate 1/|G+q|^2 with special treatment of |G+q|=0:
        G2_qG = self.pd2.G2_qG
        if self.q0 is None:
            if self.omega is None:
                self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
            else:
                self.iG2_qG = [
                    (1.0 / G2_G * (1 - np.exp(-G2_G / (4 * self.omega**2))))
                    for G2_G in G2_qG
                ]
        else:
            G2_qG[self.q0][0] = 117.0  # avoid division by zero
            if self.omega is None:
                self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
                self.iG2_qG[self.q0][0] = self.gamma
            else:
                self.iG2_qG = [
                    (1.0 / G2_G * (1 - np.exp(-G2_G / (4 * self.omega**2))))
                    for G2_G in G2_qG
                ]
                self.iG2_qG[self.q0][0] = 1 / (4 * self.omega**2)
            G2_qG[self.q0][0] = 0.0  # restore correct value

        # Compensation charges:
        self.ghat = PWLFC([setup.ghat_l for setup in wfs.setups], self.pd2)
        self.ghat.set_positions(self.spos_ac)

        if self.molecule:
            self.initialize_gaussian()
            self.log('Value of beta parameter: %.3f 1/Bohr^2' % self.beta)

        self.timer.stop('Initialization')

        # Ready ... set ... go:
        self.t0 = time()
        self.npairs = 0
        self.evv = 0.0
        self.evvacdf = 0.0
        for s in range(self.wfs.nspins):
            kpt1_q = [
                KPoint(self.wfs, noccmax).initialize(kpt)
                for kpt in self.wfs.kpt_u if kpt.s == s
            ]
            kpt2_q = kpt1_q[:]

            if len(kpt1_q) == 0:
                # No s-spins on this CPU:
                continue

            # Send and receive ranks:
            srank = self.wfs.kd.get_rank_and_index(s, (kpt1_q[0].k - 1) %
                                                   kd.nibzkpts)[0]
            rrank = self.wfs.kd.get_rank_and_index(s, (kpt1_q[-1].k + 1) %
                                                   kd.nibzkpts)[0]

            # Shift k-points kd.nibzkpts - 1 times:
            for i in range(kd.nibzkpts):
                if i < kd.nibzkpts - 1:
                    if kparallel:
                        kpt = kpt2_q[-1].next(self.wfs)
                        kpt.start_receiving(rrank)
                        kpt2_q[0].start_sending(srank)
                    else:
                        kpt = kpt2_q[0]

                self.timer.start('Calculate')
                for kpt1, kpt2 in zip(kpt1_q, kpt2_q):
                    # Loop over all k-points that k2 can be mapped to:
                    for K2, q, n1_n, n2 in self.indices(s, kpt1.k, kpt2.k):
                        self.apply(K2, q, kpt1, kpt2, n1_n, n2)
                self.timer.stop('Calculate')

                if i < kd.nibzkpts - 1:
                    self.timer.start('Wait')
                    if kparallel:
                        kpt.wait()
                        kpt2_q[0].wait()
                    self.timer.stop('Wait')
                    kpt2_q.pop(0)
                    kpt2_q.append(kpt)

        self.evv = self.world.sum(self.evv)
        self.evvacdf = self.world.sum(self.evvacdf)
        self.calculate_exx_paw_correction()

        if self.method == 'standard':
            self.exx = self.evv + self.devv + self.evc + self.ecc
        elif self.method == 'acdf':
            self.exx = self.evvacdf + self.devv + self.evc + self.ecc
        else:
            1 / 0

        self.log('Exact exchange energy:')
        for txt, e in [('core-core', self.ecc), ('valence-core', self.evc),
                       ('valence-valence (pseudo, acdf)', self.evvacdf),
                       ('valence-valence (pseudo, standard)', self.evv),
                       ('valence-valence (correction)', self.devv),
                       ('total (%s)' % self.method, self.exx)]:
            self.log('    %-36s %14.6f eV' % (txt + ':', e * Hartree))

        self.log('Total time: %10.3f seconds' % (time() - self.t0))

        self.npairs = self.world.sum(self.npairs)
        assert self.npairs == self.npairs0

        self.timer.stop('EXX')
        self.timer.write(self.fd)