Пример #1
0
class BSE:
    def __init__(self,
                 calc=None,
                 spinors=False,
                 ecut=10.,
                 scale=1.0,
                 nbands=None,
                 valence_bands=None,
                 conduction_bands=None,
                 eshift=None,
                 gw_skn=None,
                 truncation=None,
                 integrate_gamma=1,
                 txt=sys.stdout,
                 mode='BSE',
                 wfile=None,
                 write_h=False,
                 write_v=False):

        """Creates the BSE object

        calc: str or calculator object
            The string should refer to the .gpw file contaning KS orbitals
        ecut: float
            Plane wave cutoff energy (eV)
        nbands: int
            Number of bands used for the screened interaction
        valence_bands: list
            Valence bands used in the BSE Hamiltonian
        conduction_bands: list
            Conduction bands used in the BSE Hamiltonian
        eshift: float
            Scissors operator opening the gap (eV)
        gw_skn: list / array
            List or array defining the gw quasiparticle energies used in
            the BSE Hamiltonian. Should match spin, k-points and
            valence/conduction bands
        truncation: str
            Coulomb truncation scheme. Can be either wigner-seitz,
            2D, 1D, or 0D
        integrate_gamma: int
            Method to integrate the Coulomb interaction. 1 is a numerical
            integration at all q-points with G=[0,0,0] - this breaks the
            symmetry slightly. 0 is analytical integration at q=[0,0,0] only -
            this conserves the symmetry. integrate_gamma=2 is the same as 1,
            but the average is only carried out in the non-periodic directions.
        txt: str
            txt output
        mode: str
            Theory level used. can be RPA TDHF or BSE. Only BSE is screened.
        wfile: str
            File for saving screened interaction and some other stuff
            needed later
        write_h: bool
            If True, write the BSE Hamiltonian to H_SS.ulm.
        write_v: bool
            If True, write eigenvalues and eigenstates to v_TS.ulm
        """

        # Calculator
        if isinstance(calc, str):
            calc = GPAW(calc, txt=None, communicator=serial_comm)
        self.calc = calc
        self.spinors = spinors
        self.scale = scale

        assert mode in ['RPA', 'TDHF', 'BSE']
        # assert calc.wfs.kd.nbzkpts % world.size == 0

        # txt file
        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w', 1)
        self.fd = txt

        self.ecut = ecut / Hartree
        self.nbands = nbands
        self.mode = mode
        self.truncation = truncation
        if integrate_gamma == 0 and truncation is not None:
            print('***WARNING*** Analytical Coulomb integration is ' +
                  'not expected to work with Coulomb truncation. ' +
                  'Use integrate_gamma=1', file=self.fd)
        self.integrate_gamma = integrate_gamma
        self.wfile = wfile
        self.write_h = write_h
        self.write_v = write_v

        # Find q-vectors and weights in the IBZ:
        self.kd = calc.wfs.kd
        if -1 in self.kd.bz2bz_ks:
            print('***WARNING*** Symmetries may not be right ' +
                  'Use gamma-centered grid to be sure', file=self.fd)
        offset_c = 0.5 * ((self.kd.N_c + 1) % 2) / self.kd.N_c
        bzq_qc = monkhorst_pack(self.kd.N_c) + offset_c
        self.qd = KPointDescriptor(bzq_qc)
        self.qd.set_symmetry(self.calc.atoms, self.kd.symmetry)
        self.vol = abs(np.linalg.det(calc.wfs.gd.cell_cv))

        # bands
        self.spins = self.calc.wfs.nspins
        if self.spins == 2:
            if self.spinors:
                self.spinors = False
                print('***WARNING*** Presently the spinor version' +
                      'does not work for spin-polarized calculations.' +
                      'Performing scalar calculation', file=self.fd)
            assert len(valence_bands[0]) == len(valence_bands[1])
            assert len(conduction_bands[0]) == len(conduction_bands[1])
        if valence_bands is None:
            nv = self.calc.wfs.setups.nvalence
            valence_bands = [[nv // 2 - 1]]
            if self.spins == 2:
                valence_bands *= 2
        if conduction_bands is None:
            conduction_bands = [[valence_bands[-1] + 1]]
            if self.spins == 2:
                conduction_bands *= 2

        self.val_sn = np.array(valence_bands)
        if len(np.shape(self.val_sn)) == 1:
            self.val_sn = np.array([self.val_sn])
        self.con_sn = np.array(conduction_bands)
        if len(np.shape(self.con_sn)) == 1:
            self.con_sn = np.array([self.con_sn])

        self.td = True
        for n in self.val_sn[0]:
            if n in self.con_sn[0]:
                self.td = False
        if len(self.val_sn) == 2:
            for n in self.val_sn[1]:
                if n in self.con_sn[1]:
                    self.td = False

        self.nv = len(self.val_sn[0])
        self.nc = len(self.con_sn[0])
        if eshift is not None:
            eshift /= Hartree
        if gw_skn is not None:
            assert self.nv + self.nc == len(gw_skn[0, 0])
            assert self.kd.nibzkpts == len(gw_skn[0])
            gw_skn = gw_skn[:, self.kd.bz2ibz_k]
            # assert self.kd.nbzkpts == len(gw_skn[0])
            gw_skn /= Hartree
        self.gw_skn = gw_skn
        self.eshift = eshift

        # Number of pair orbitals
        self.nS = self.kd.nbzkpts * self.nv * self.nc * self.spins
        self.nS *= (self.spinors + 1)**2

        # Wigner-Seitz stuff
        if self.truncation == 'wigner-seitz':
            self.wstc = WignerSeitzTruncatedCoulomb(self.calc.wfs.gd.cell_cv,
                                                    self.kd.N_c, self.fd)
        else:
            self.wstc = None

        self.print_initialization(self.td, self.eshift, self.gw_skn)

    def calculate(self, optical=True, ac=1.0):

        if self.spinors:
            """Calculate spinors. Here m is index of eigenvalues with SOC
            and n is the basis of eigenstates withour SOC. Below m is used
            for unoccupied states and n is used for occupied states so be
            careful!"""

            print('Diagonalizing spin-orbit Hamiltonian', file=self.fd)
            param = self.calc.parameters
            if not param['symmetry'] == 'off':
                print('Calculating KS wavefunctions without symmetry ' +
                      'for spin-orbit', file=self.fd)
                if not op.isfile('gs_nosym.gpw'):
                    calc_so = GPAW(**param)
                    calc_so.set(symmetry='off',
                                fixdensity=True,
                                txt='gs_nosym.txt')
                    calc_so.atoms = self.calc.atoms
                    calc_so.density = self.calc.density
                    calc_so.get_potential_energy()
                    calc_so.write('gs_nosym.gpw')
                calc_so = GPAW('gs_nosym.gpw', txt=None,
                               communicator=serial_comm)
                e_mk, v_knm = get_spinorbit_eigenvalues(calc_so,
                                                        return_wfs=True,
                                                        scale=self.scale)
                del calc_so
            else:
                e_mk, v_knm = get_spinorbit_eigenvalues(self.calc,
                                                        return_wfs=True,
                                                        scale=self.scale)
            e_mk /= Hartree

        # Parallelization stuff
        nK = self.kd.nbzkpts
        myKrange, myKsize, mySsize = self.parallelisation_sizes()

        # Calculate exchange interaction
        qd0 = KPointDescriptor([self.q_c])
        pd0 = PWDescriptor(self.ecut, self.calc.wfs.gd, complex, qd0)
        ikq_k = self.kd.find_k_plus_q(self.q_c)
        v_G = get_coulomb_kernel(pd0, self.kd.N_c, truncation=self.truncation,
                                 wstc=self.wstc)
        if optical:
            v_G[0] = 0.0

        self.pair = PairDensity(self.calc, self.ecut, world=serial_comm,
                                txt='pair.txt')

        # Calculate direct (screened) interaction and PAW corrections
        if self.mode == 'RPA':
            Q_aGii = self.pair.initialize_paw_corrections(pd0)
        else:
            self.get_screened_potential(ac=ac)
            if (self.qd.ibzk_kc - self.q_c < 1.0e-6).all():
                iq0 = self.qd.bz2ibz_k[self.kd.where_is_q(self.q_c,
                                                          self.qd.bzk_kc)]
                Q_aGii = self.Q_qaGii[iq0]
            else:
                Q_aGii = self.pair.initialize_paw_corrections(pd0)

        # Calculate pair densities, eigenvalues and occupations
        so = self.spinors + 1
        Nv, Nc = so * self.nv, so * self.nc
        Ns = self.spins
        rhoex_KsmnG = np.zeros((nK, Ns, Nv, Nc, len(v_G)), complex)
        # rhoG0_Ksmn = np.zeros((nK, Ns, Nv, Nc), complex)
        df_Ksmn = np.zeros((nK, Ns, Nv, Nc), float) # -(ev - ec)
        deps_ksmn = np.zeros((myKsize, Ns, Nv, Nc), float) # -(fv - fc)
        if np.allclose(self.q_c, 0.0):
            optical_limit = True
        else:
            optical_limit = False
        get_pair = self.pair.get_kpoint_pair
        get_rho = self.pair.get_pair_density
        if self.spinors:
            # Get all pair densities to allow for SOC mixing
            # Use twice as many no-SOC states as BSE bands to allow mixing
            vi_s = [2 * self.val_sn[0, 0] - self.val_sn[0, -1] - 1]
            vf_s = [2 * self.con_sn[0, -1] - self.con_sn[0, 0] + 2]
            if vi_s[0] < 0:
                vi_s[0] = 0
            ci_s, cf_s = vi_s, vf_s
            ni, nf = vi_s[0], vf_s[0]
            mvi = 2 * self.val_sn[0, 0]
            mvf = 2 * (self.val_sn[0, -1] + 1)
            mci = 2 * self.con_sn[0, 0]
            mcf = 2 * (self.con_sn[0, -1] + 1)
        else:
            vi_s, vf_s = self.val_sn[:, 0], self.val_sn[:, -1] + 1
            ci_s, cf_s = self.con_sn[:, 0], self.con_sn[:, -1] + 1
        for ik, iK in enumerate(myKrange):
            for s in range(Ns):
                pair = get_pair(pd0, s, iK,
                                vi_s[s], vf_s[s], ci_s[s], cf_s[s])
                m_m = np.arange(vi_s[s], vf_s[s])
                n_n = np.arange(ci_s[s], cf_s[s])
                if self.gw_skn is not None:
                    iKq = self.calc.wfs.kd.find_k_plus_q(self.q_c, [iK])[0]
                    epsv_m = self.gw_skn[s, iK, :self.nv]
                    epsc_n = self.gw_skn[s, iKq, self.nv:]
                    deps_ksmn[ik] = -(epsv_m[:, np.newaxis] - epsc_n)
                elif self.spinors:
                    iKq = self.calc.wfs.kd.find_k_plus_q(self.q_c, [iK])[0]
                    epsv_m = e_mk[mvi:mvf, iK]
                    epsc_n = e_mk[mci:mcf, iKq]
                    deps_ksmn[ik, s] = -(epsv_m[:, np.newaxis] - epsc_n)
                else:
                    deps_ksmn[ik, s] = -pair.get_transition_energies(m_m, n_n)

                df_mn = pair.get_occupation_differences(self.val_sn[s],
                                                        self.con_sn[s])
                rho_mnG = get_rho(pd0, pair,
                                  m_m, n_n,
                                  optical_limit=optical_limit,
                                  direction=self.direction,
                                  Q_aGii=Q_aGii,
                                  extend_head=False)
                if self.spinors:
                    if optical_limit:
                        deps0_mn = -pair.get_transition_energies(m_m, n_n)
                        rho_mnG[:, :, 0] *= deps0_mn
                    df_Ksmn[iK, s, ::2, ::2] = df_mn
                    df_Ksmn[iK, s, ::2, 1::2] = df_mn
                    df_Ksmn[iK, s, 1::2, ::2] = df_mn
                    df_Ksmn[iK, s, 1::2, 1::2] = df_mn
                    vecv0_nm = v_knm[iK][::2][ni:nf, mvi:mvf]
                    vecc0_nm = v_knm[iKq][::2][ni:nf, mci:mcf]
                    rho_0mnG = np.dot(vecv0_nm.T.conj(),
                                      np.dot(vecc0_nm.T, rho_mnG))
                    vecv1_nm = v_knm[iK][1::2][ni:nf, mvi:mvf]
                    vecc1_nm = v_knm[iKq][1::2][ni:nf, mci:mcf]
                    rho_1mnG = np.dot(vecv1_nm.T.conj(),
                                      np.dot(vecc1_nm.T, rho_mnG))
                    rhoex_KsmnG[iK, s] = rho_0mnG + rho_1mnG
                    if optical_limit:
                        rhoex_KsmnG[iK, s, :, :, 0] /= deps_ksmn[ik, s]
                else:
                    df_Ksmn[iK, s] = pair.get_occupation_differences(m_m, n_n)
                    rhoex_KsmnG[iK, s] = rho_mnG

        if self.eshift is not None:
            deps_ksmn[np.where(df_Ksmn[myKrange] > 1.0e-3)] += self.eshift
            deps_ksmn[np.where(df_Ksmn[myKrange] < -1.0e-3)] -= self.eshift

        world.sum(df_Ksmn)
        world.sum(rhoex_KsmnG)

        self.rhoG0_S = np.reshape(rhoex_KsmnG[:, :, :, :, 0], -1)

        if hasattr(self, 'H_sS'):
            return

        # Calculate Hamiltonian
        t0 = time()
        print('Calculating %s matrix elements at q_c = %s'
              % (self.mode, self.q_c), file=self.fd)
        H_ksmnKsmn = np.zeros((myKsize, Ns, Nv, Nc, nK, Ns, Nv, Nc), complex)
        for ik1, iK1 in enumerate(myKrange):
            for s1 in range(Ns):
                kptv1 = self.pair.get_k_point(s1, iK1, vi_s[s1], vf_s[s1])
                kptc1 = self.pair.get_k_point(s1, ikq_k[iK1], ci_s[s1],
                                              cf_s[s1])
                rho1_mnG = rhoex_KsmnG[iK1, s1]

                #rhoG0_Ksmn[iK1, s1] = rho1_mnG[:, :, 0]
                rho1ccV_mnG = rho1_mnG.conj()[:, :] * v_G
                for s2 in range(Ns):
                    for Q_c in self.qd.bzk_kc:
                        iK2 = self.kd.find_k_plus_q(Q_c, [kptv1.K])[0]
                        rho2_mnG = rhoex_KsmnG[iK2, s2]
                        rho2_mGn = np.swapaxes(rho2_mnG, 1, 2)
                        H_ksmnKsmn[ik1, s1, :, :, iK2, s2, :, :] += (
                            np.dot(rho1ccV_mnG, rho2_mGn))
                        if not self.mode == 'RPA' and s1 == s2:
                            ikq = ikq_k[iK2]
                            kptv2 = self.pair.get_k_point(s1, iK2, vi_s[s1],
                                                          vf_s[s1])
                            kptc2 = self.pair.get_k_point(s1, ikq, ci_s[s1],
                                                          cf_s[s1])
                            rho3_mmG, iq = self.get_density_matrix(kptv1,
                                                                   kptv2)
                            rho4_nnG, iq = self.get_density_matrix(kptc1,
                                                                   kptc2)
                            if self.spinors:
                                vec0_nm = v_knm[iK1][::2][ni:nf, mvi:mvf]
                                vec1_nm = v_knm[iK1][1::2][ni:nf, mvi:mvf]
                                vec2_nm = v_knm[iK2][::2][ni:nf, mvi:mvf]
                                vec3_nm = v_knm[iK2][1::2][ni:nf, mvi:mvf]
                                rho_0mnG = np.dot(vec0_nm.T.conj(),
                                                  np.dot(vec2_nm.T, rho3_mmG))
                                rho_1mnG = np.dot(vec1_nm.T.conj(),
                                                  np.dot(vec3_nm.T, rho3_mmG))
                                rho3_mmG = rho_0mnG + rho_1mnG
                                vec0_nm = v_knm[ikq_k[iK1]][::2][ni:nf, mci:mcf]
                                vec1_nm = v_knm[ikq_k[iK1]][1::2][ni:nf,mci:mcf]
                                vec2_nm = v_knm[ikq][::2][ni:nf, mci:mcf]
                                vec3_nm = v_knm[ikq][1::2][ni:nf, mci:mcf]
                                rho_0mnG = np.dot(vec0_nm.T.conj(),
                                                  np.dot(vec2_nm.T, rho4_nnG))
                                rho_1mnG = np.dot(vec1_nm.T.conj(),
                                                  np.dot(vec3_nm.T, rho4_nnG))
                                rho4_nnG = rho_0mnG + rho_1mnG

                            rho3ccW_mmG = np.dot(rho3_mmG.conj(),
                                                 self.W_qGG[iq])
                            W_mmnn = np.dot(rho3ccW_mmG,
                                            np.swapaxes(rho4_nnG, 1, 2))
                            W_mnmn = np.swapaxes(W_mmnn, 1, 2) * Ns * so
                            H_ksmnKsmn[ik1, s1, :, :, iK2, s1] -= 0.5 * W_mnmn
            if iK1 % (myKsize // 5 + 1) == 0:
                dt = time() - t0
                tleft = dt * myKsize / (iK1 + 1) - dt
                print('  Finished %s pair orbitals in %s - Estimated %s left' %
                      ((iK1 + 1) * Nv * Nc * Ns * world.size,
                       timedelta(seconds=round(dt)),
                       timedelta(seconds=round(tleft))), file=self.fd)

        #if self.mode == 'BSE':
        #    del self.Q_qaGii, self.W_qGG, self.pd_q

        H_ksmnKsmn /= self.vol

        mySsize = myKsize * Nv * Nc * Ns
        if myKsize > 0:
            iS0 = myKrange[0] *  Nv * Nc * Ns

        #world.sum(rhoG0_Ksmn)
        #self.rhoG0_S = np.reshape(rhoG0_Ksmn, -1)
        self.df_S = np.reshape(df_Ksmn, -1)
        if not self.td:
            self.excludef_S = np.where(np.abs(self.df_S) < 0.001)[0]
        # multiply by 2 when spin-paired and no SOC
        self.df_S *= 2.0 / nK / Ns / so
        self.deps_s = np.reshape(deps_ksmn, -1)
        H_sS = np.reshape(H_ksmnKsmn, (mySsize, self.nS))
        for iS in range(mySsize):
            # Multiply by occupations and adiabatic coupling
            H_sS[iS] *= self.df_S[iS0 + iS] * ac
            # add bare transition energies
            H_sS[iS, iS0 + iS] += self.deps_s[iS]

        self.H_sS = H_sS

        if self.write_h:
            self.par_save('H_SS.ulm', 'H_SS', self.H_sS)

    def get_density_matrix(self, kpt1, kpt2):

        Q_c = self.kd.bzk_kc[kpt2.K] - self.kd.bzk_kc[kpt1.K]
        iQ = self.qd.where_is_q(Q_c, self.qd.bzk_kc)
        iq = self.qd.bz2ibz_k[iQ]
        q_c = self.qd.ibzk_kc[iq]

        # Find symmetry that transforms Q_c into q_c
        sym = self.qd.sym_k[iQ]
        U_cc = self.qd.symmetry.op_scc[sym]
        time_reversal = self.qd.time_reversal_k[iQ]
        sign = 1 - 2 * time_reversal
        d_c = sign * np.dot(U_cc, q_c) - Q_c
        assert np.allclose(d_c.round(), d_c)

        pd = self.pd_q[iq]
        N_c = pd.gd.N_c
        i_cG = sign * np.dot(U_cc, np.unravel_index(pd.Q_qG[0], N_c))

        shift0_c = Q_c - sign * np.dot(U_cc, q_c)
        assert np.allclose(shift0_c.round(), shift0_c)
        shift0_c = shift0_c.round().astype(int)

        shift_c = kpt1.shift_c - kpt2.shift_c - shift0_c
        I_G = np.ravel_multi_index(i_cG + shift_c[:, None], N_c, 'wrap')
        G_Gv = pd.get_reciprocal_vectors()
        pos_ac = self.calc.spos_ac
        pos_av = np.dot(pos_ac, pd.gd.cell_cv)
        M_vv = np.dot(pd.gd.cell_cv.T, np.dot(U_cc.T,
                                              np.linalg.inv(pd.gd.cell_cv).T))

        Q_aGii = []
        for a, Q_Gii in enumerate(self.Q_qaGii[iq]):
            x_G = np.exp(1j * np.dot(G_Gv, (pos_av[a] -
                                            np.dot(M_vv, pos_av[a]))))
            U_ii = self.calc.wfs.setups[a].R_sii[sym]
            Q_Gii = np.dot(np.dot(U_ii, Q_Gii * x_G[:, None, None]),
                           U_ii.T).transpose(1, 0, 2)
            if sign == -1:
                Q_Gii = Q_Gii.conj()
            Q_aGii.append(Q_Gii)

        rho_mnG = np.zeros((len(kpt1.eps_n), len(kpt2.eps_n), len(G_Gv)),
                           complex)
        for m in range(len(rho_mnG)):
            C1_aGi = [np.dot(Qa_Gii, P1_ni[m].conj())
                      for Qa_Gii, P1_ni in zip(Q_aGii, kpt1.P_ani)]
            ut1cc_R = kpt1.ut_nR[m].conj()
            rho_mnG[m] = self.pair.calculate_pair_densities(ut1cc_R, C1_aGi,
                                                            kpt2, pd, I_G)
        return rho_mnG, iq

    def get_screened_potential(self, ac=1.0):

        if hasattr(self, 'W_qGG'):
            return

        if self.wfile is not None:
            # Read screened potential from file
            try:
                data = np.load(self.wfile + '.npz')
                self.Q_qaGii = data['Q']
                self.W_qGG = data['W']
                self.pd_q = data['pd']
                print('Reading screened potential from % s' % self.wfile,
                      file=self.fd)
            except:
                self.calculate_screened_potential(ac)
                print('Saving screened potential to % s' % self.wfile,
                      file=self.fd)
                if world.rank == 0:
                    np.savez(self.wfile,
                             Q=self.Q_qaGii, pd=self.pd_q, W=self.W_qGG)
        else:
            self.calculate_screened_potential(ac)

    def calculate_screened_potential(self, ac):
        """Calculate W_GG(q)"""

        chi0 = Chi0(self.calc,
                    frequencies=[0.0],
                    eta=0.001,
                    ecut=self.ecut,
                    intraband=False,
                    hilbert=False,
                    nbands=self.nbands,
                    txt='chi0.txt',
                    world=world,
                    )

        self.blockcomm = chi0.blockcomm
        wfs = self.calc.wfs

        self.Q_qaGii = []
        self.W_qGG = []
        self.pd_q = []

        t0 = time()
        print('Calculating screened potential', file=self.fd)
        for iq, q_c in enumerate(self.qd.ibzk_kc):
            thisqd = KPointDescriptor([q_c])
            pd = PWDescriptor(self.ecut, wfs.gd, complex, thisqd)
            nG = pd.ngmax

            chi0.Ga = self.blockcomm.rank * nG
            chi0.Gb = min(chi0.Ga + nG, nG)
            chi0_wGG = np.zeros((1, nG, nG), complex)
            if np.allclose(q_c, 0.0):
                chi0_wxvG = np.zeros((1, 2, 3, nG), complex)
                chi0_wvv = np.zeros((1, 3, 3), complex)
            else:
                chi0_wxvG = None
                chi0_wvv = None

            chi0._calculate(pd, chi0_wGG, chi0_wxvG, chi0_wvv,
                            0, self.nbands, spins='all', extend_head=False)
            chi0_GG = chi0_wGG[0]

            # Calculate eps^{-1}_GG
            if pd.kd.gamma:
                # Generate fine grid in vicinity of gamma
                kd = self.calc.wfs.kd
                N = 4
                N_c = np.array([N, N, N])
                if self.truncation is not None:
                    # Only average periodic directions if trunction is used
                    N_c[kd.N_c == 1] = 1
                qf_qc = monkhorst_pack(N_c) / kd.N_c
                qf_qc *= 1.0e-6
                U_scc = kd.symmetry.op_scc
                qf_qc = kd.get_ibz_q_points(qf_qc, U_scc)[0]
                weight_q = kd.q_weights
                qf_qv = 2 * np.pi * np.dot(qf_qc, pd.gd.icell_cv)
                a_q = np.sum(np.dot(chi0_wvv[0], qf_qv.T) * qf_qv.T, axis=0)
                a0_qG = np.dot(qf_qv, chi0_wxvG[0, 0])
                a1_qG = np.dot(qf_qv, chi0_wxvG[0, 1])
                einv_GG = np.zeros((nG, nG), complex)
                # W_GG = np.zeros((nG, nG), complex)
                for iqf in range(len(qf_qv)):
                    chi0_GG[0] = a0_qG[iqf]
                    chi0_GG[:, 0] = a1_qG[iqf]
                    chi0_GG[0, 0] = a_q[iqf]
                    sqrV_G = get_coulomb_kernel(pd,
                                                kd.N_c,
                                                truncation=self.truncation,
                                                wstc=self.wstc,
                                                q_v=qf_qv[iqf])**0.5
                    sqrV_G *= ac**0.5  # Multiply by adiabatic coupling
                    e_GG = np.eye(nG) - chi0_GG * sqrV_G * sqrV_G[:,
                                                                  np.newaxis]
                    einv_GG += np.linalg.inv(e_GG) * weight_q[iqf]
                    # einv_GG = np.linalg.inv(e_GG) * weight_q[iqf]
                    # W_GG += (einv_GG * sqrV_G * sqrV_G[:, np.newaxis]
                    #          * weight_q[iqf])
            else:
                sqrV_G = get_coulomb_kernel(pd,
                                            self.kd.N_c,
                                            truncation=self.truncation,
                                            wstc=self.wstc)**0.5
                sqrV_G *= ac**0.5  # Multiply by adiabatic coupling
                e_GG = np.eye(nG) - chi0_GG * sqrV_G * sqrV_G[:, np.newaxis]
                einv_GG = np.linalg.inv(e_GG)
                # W_GG = einv_GG * sqrV_G * sqrV_G[:, np.newaxis]

            # Now calculate W_GG
            if pd.kd.gamma:
                # Reset bare Coulomb interaction
                sqrV_G = get_coulomb_kernel(pd,
                                            self.kd.N_c,
                                            truncation=self.truncation,
                                            wstc=self.wstc)**0.5
            W_GG = einv_GG * sqrV_G * sqrV_G[:, np.newaxis]
            if self.integrate_gamma != 0:
                # Numerical integration of Coulomb interaction at all q-points
                if self.integrate_gamma == 2:
                    reduced = True
                else:
                    reduced = False
                V0, sqrV0 = get_integrated_kernel(pd,
                                                  self.kd.N_c,
                                                  truncation=self.truncation,
                                                  reduced=reduced,
                                                  N=100)
                W_GG[0, 0] = einv_GG[0, 0] * V0
                W_GG[0, 1:] = einv_GG[0, 1:] * sqrV0 * sqrV_G[1:]
                W_GG[1:, 0] = einv_GG[1:, 0] * sqrV_G[1:] * sqrV0
            elif self.integrate_gamma == 0 and pd.kd.gamma:
                # Analytical integration at gamma
                bzvol = (2 * np.pi)**3 / self.vol / self.qd.nbzkpts
                Rq0 = (3 * bzvol / (4 * np.pi))**(1. / 3.)
                V0 = 16 * np.pi**2 * Rq0 / bzvol
                sqrV0 = (4 * np.pi)**(1.5) * Rq0**2 / bzvol / 2
                W_GG[0, 0] = einv_GG[0, 0] * V0
                W_GG[0, 1:] = einv_GG[0, 1:] * sqrV0 * sqrV_G[1:]
                W_GG[1:, 0] = einv_GG[1:, 0] * sqrV_G[1:] * sqrV0
            else:
                pass

            if pd.kd.gamma:
                e = 1 / einv_GG[0, 0].real
                print('    RPA dielectric constant is: %3.3f' % e,
                      file=self.fd)
            self.Q_qaGii.append(chi0.Q_aGii)
            self.pd_q.append(pd)
            self.W_qGG.append(W_GG)

            if iq % (self.qd.nibzkpts // 5 + 1) == 2:
                dt = time() - t0
                tleft = dt * self.qd.nibzkpts / (iq + 1) - dt
                print('  Finished %s q-points in %s - Estimated %s left' %
                      (iq + 1, timedelta(seconds=round(dt)),
                       timedelta(seconds=round(tleft))), file=self.fd)

    def diagonalize(self):

        print('Diagonalizing Hamiltonian', file=self.fd)
        """The t and T represent local and global
           eigenstates indices respectively
        """

        # Non-Hermitian matrix can only use linalg.eig
        if not self.td:
            print('  Using numpy.linalg.eig...', file=self.fd)
            print('  Eliminated %s pair orbitals' % len(self.excludef_S),
                  file=self.fd)

            self.H_SS = self.collect_A_SS(self.H_sS)
            self.w_T = np.zeros(self.nS - len(self.excludef_S), complex)
            if world.rank == 0:
                self.H_SS = np.delete(self.H_SS, self.excludef_S, axis=0)
                self.H_SS = np.delete(self.H_SS, self.excludef_S, axis=1)
                self.w_T, self.v_ST = np.linalg.eig(self.H_SS)
            world.broadcast(self.w_T, 0)
            self.df_S = np.delete(self.df_S, self.excludef_S)
            self.rhoG0_S = np.delete(self.rhoG0_S, self.excludef_S)
        # Here the eigenvectors are returned as complex conjugated rows
        else:
            if world.size == 1:
                print('  Using lapack...', file=self.fd)
                from gpaw.utilities.lapack import diagonalize
                self.w_T = np.zeros(self.nS)
                diagonalize(self.H_sS, self.w_T)
                self.v_St = self.H_sS.conj().T
            else:
                print('  Using scalapack...', file=self.fd)
                nS = self.nS
                ns = -(-self.kd.nbzkpts // world.size) * (self.nv * self.nc *
                                                          self.spins *
                                                          (self.spinors + 1)**2)
                grid = BlacsGrid(world, world.size, 1)
                desc = grid.new_descriptor(nS, nS, ns, nS)

                desc2 = grid.new_descriptor(nS, nS, 2, 2)
                H_tmp = desc2.zeros(dtype=complex)
                r = Redistributor(world, desc, desc2)
                r.redistribute(self.H_sS, H_tmp)

                self.w_T = np.empty(nS)
                v_tmp = desc2.empty(dtype=complex)
                desc2.diagonalize_dc(H_tmp, v_tmp, self.w_T)

                r = Redistributor(grid.comm, desc2, desc)
                self.v_St = desc.zeros(dtype=complex)
                r.redistribute(v_tmp, self.v_St)
                self.v_St = self.v_St.conj().T

        if self.write_v and self.td:
            # Cannot use par_save without td
            self.par_save('v_TS.ulm', 'v_TS', self.v_St.T)

        return

    def get_bse_matrix(self, q_c=[0.0, 0.0, 0.0], direction=0, ac=1.0,
                       readfile=None, optical=True, write_eig=None):
        """Calculate and diagonalize BSE matrix"""

        self.q_c = q_c
        self.direction = direction

        if readfile is None:
            self.calculate(optical=optical, ac=ac)
            if hasattr(self, 'w_T'):
                return
            self.diagonalize()
        elif readfile == 'H_SS':
            print('Reading Hamiltonian from file', file=self.fd)
            self.par_load('H_SS.ulm', 'H_SS')
            self.diagonalize()
        elif readfile == 'v_TS':
            print('Reading eigenstates from file', file=self.fd)
            self.par_load('v_TS.ulm', 'v_TS')
        else:
            raise ValueError('%s array not recognized' % readfile)

        # TODO: Move write_eig here

        return

    def get_vchi(self, w_w=None, eta=0.1, q_c=[0.0, 0.0, 0.0],
                 direction=0, ac=1.0, readfile=None, optical=True,
                 write_eig=None):
        """Returns v * \chi where v is the bare Coulomb interaction"""

        self.get_bse_matrix(q_c=q_c, direction=direction, ac=ac,
                            readfile=readfile, optical=optical,
                            write_eig=write_eig)

        w_T = self.w_T
        rhoG0_S = self.rhoG0_S
        df_S = self.df_S

        print('Calculating response function at %s frequency points' %
              len(w_w), file=self.fd)
        vchi_w = np.zeros(len(w_w), dtype=complex)

        if not self.td:
            C_T = np.zeros(self.nS - len(self.excludef_S), complex)
            if world.rank == 0:
                A_T = np.dot(rhoG0_S, self.v_ST)
                B_T = np.dot(rhoG0_S * df_S, self.v_ST)
                tmp = np.dot(self.v_ST.conj().T, self.v_ST)
                overlap_tt = np.linalg.inv(tmp)
                C_T = np.dot(B_T.conj(), overlap_tt.T) * A_T
            world.broadcast(C_T, 0)
        else:
            A_t = np.dot(rhoG0_S, self.v_St)
            B_t = np.dot(rhoG0_S * df_S, self.v_St)
            if world.size == 1:
                C_T = B_t.conj() * A_t
            else:
                Nv = self.nv * (self.spinors + 1)
                Nc = self.nc * (self.spinors + 1)
                Ns = self.spins
                nS = self.nS
                ns = -(-self.kd.nbzkpts // world.size) * Nv * Nc * Ns
                grid = BlacsGrid(world, world.size, 1)
                desc = grid.new_descriptor(nS, 1, ns, 1)
                C_t = desc.empty(dtype=complex)
                C_t[:, 0] = B_t.conj() * A_t
                C_T = desc.collect_on_master(C_t)[:, 0]
                if world.rank != 0:
                    C_T = np.empty(nS, dtype=complex)
                world.broadcast(C_T, 0)

        eta /= Hartree
        for iw, w in enumerate(w_w / Hartree):
            tmp_T = 1. / (w - w_T + 1j * eta)
            vchi_w[iw] += np.dot(tmp_T, C_T)
        vchi_w *= 4 * np.pi / self.vol

        if not np.allclose(self.q_c, 0.0):
            cell_cv = self.calc.wfs.gd.cell_cv
            B_cv = 2 * np.pi * np.linalg.inv(cell_cv).T
            q_v = np.dot(q_c, B_cv)
            vchi_w /= np.dot(q_v, q_v)

        """Check f-sum rule."""
        nv = self.calc.wfs.setups.nvalence
        dw_w = (w_w[1:] - w_w[:-1]) / Hartree
        wchi_w = (w_w[1:] * vchi_w[1:] + w_w[:-1] * vchi_w[:-1]) / Hartree / 2
        N = -np.dot(dw_w, wchi_w.imag) * self.vol / (2 * np.pi**2)
        print(file=self.fd)
        print('Checking f-sum rule:', file=self.fd)
        print('  Valence = %s, N = %f' % (nv, N), file=self.fd)
        print(file=self.fd)

        if write_eig is not None:
            if world.rank == 0:
                f = open(write_eig, 'w')
                print('# %s eigenvalues in eV' % self.mode, file=f)
                for iw, w in enumerate(self.w_T * Hartree):
                    print('%8d %12.6f %12.16f' % (iw, w.real, C_T[iw].real),
                          file=f)
                f.close()

        return vchi_w * ac

    def get_dielectric_function(self, w_w=None, eta=0.1,
                                q_c=[0.0, 0.0, 0.0], direction=0,
                                filename='df_bse.csv', readfile=None,
                                write_eig='eig.dat'):
        """Returns and writes real and imaginary part of the dielectric
        function.

        w_w: list of frequencies (eV)
            Dielectric function is calculated at these frequencies
        eta: float
            Lorentzian broadening of the spectrum (eV)
        q_c: list of three floats
            Wavevector in reduced units on which the response is calculated
        direction: int
            if q_c = [0, 0, 0] this gives the direction in cartesian
            coordinates - 0=x, 1=y, 2=z
        filename: str
            data file on which frequencies, real and imaginary part of
            dielectric function is written
        readfile: str
            If H_SS is given, the method will load the BSE Hamiltonian
            from H_SS.ulm. If v_TS is given, the method will load the
            eigenstates from v_TS.ulm
        write_eig: str
            File on which the BSE eigenvalues are written
        """

        epsilon_w = -self.get_vchi(w_w=w_w, eta=eta, q_c=q_c,
                                   direction=direction,
                                   readfile=readfile, optical=True,
                                   write_eig=write_eig)
        epsilon_w += 1.0

        if world.rank == 0 and filename is not None:
            f = open(filename, 'w')
            for iw, w in enumerate(w_w):
                print('%.9f, %.9f, %.9f' %
                      (w, epsilon_w[iw].real, epsilon_w[iw].imag), file=f)
            f.close()
        world.barrier()

        print('Calculation completed at:', ctime(), file=self.fd)
        print(file=self.fd)

        return w_w, epsilon_w

    def get_eels_spectrum(self, w_w=None, eta=0.1,
                          q_c=[0.0, 0.0, 0.0], direction=0,
                          filename='df_bse.csv', readfile=None,
                          write_eig='eig.dat'):
        """Returns and writes real and imaginary part of the dielectric
        function.

        w_w: list of frequencies (eV)
            Dielectric function is calculated at these frequencies
        eta: float
            Lorentzian broadening of the spectrum (eV)
        q_c: list of three floats
            Wavevector in reduced units on which the response is calculated
        direction: int
            if q_c = [0, 0, 0] this gives the direction in cartesian
            coordinates - 0=x, 1=y, 2=z
        filename: str
            data file on which frequencies, real and imaginary part of
            dielectric function is written
        readfile: str
            If H_SS is given, the method will load the BSE Hamiltonian
            from H_SS.ulm. If v_TS is given, the method will load the
            eigenstates from v_TS.ulm
        write_eig: str
            File on which the BSE eigenvalues are written
        """

        eels_w = -self.get_vchi(w_w=w_w, eta=eta, q_c=q_c, direction=direction,
                                readfile=readfile, optical=False,
                                write_eig=write_eig).imag

        if world.rank == 0 and filename is not None:
            f = open(filename, 'w')
            for iw, w in enumerate(w_w):
                print('%.9f, %.9f' % (w, eels_w[iw]), file=f)
            f.close()
        world.barrier()

        print('Calculation completed at:', ctime(), file=self.fd)
        print(file=self.fd)

        return w_w, eels_w

    def get_polarizability(self, w_w=None, eta=0.1,
                           q_c=[0.0, 0.0, 0.0], direction=0,
                           filename='pol_bse.csv', readfile=None, pbc=None,
                           write_eig='eig.dat'):
        """Calculate the polarizability alpha.
        In 3D the imaginary part of the polarizability is related to the
        dielectric function by Im(eps_M) = 4 pi * Im(alpha). In systems
        with reduced dimensionality the converged value of alpha is
        independent of the cell volume. This is not the case for eps_M,
        which is ill defined. A truncated Coulomb kernel will always give
        eps_M = 1.0, whereas the polarizability maintains its structure.
        pbs should be a list of booleans giving the periodic directions.

        By default, generate a file 'pol_bse.csv'. The three colomns are:
        frequency (eV), Real(alpha), Imag(alpha). The dimension of alpha
        is \AA to the power of non-periodic directions.
        """

        cell_cv = self.calc.wfs.gd.cell_cv
        if not pbc:
            pbc_c = self.calc.atoms.pbc
        else:
            pbc_c = np.array(pbc)
        if pbc_c.all():
            V = 1.0
        else:
            V = np.abs(np.linalg.det(cell_cv[~pbc_c][:, ~pbc_c]))

        if self.truncation is None:
            optical = True
        else:
            optical = False

        vchi_w = self.get_vchi(w_w=w_w, eta=eta, q_c=q_c, direction=direction,
                               readfile=readfile, optical=optical,
                               write_eig=write_eig)
        alpha_w = -V * vchi_w / (4 * np.pi)
        alpha_w *= Bohr**(sum(~pbc_c))

        if world.rank == 0 and filename is not None:
            fd = open(filename, 'w')
            for iw, w in enumerate(w_w):
                print('%.9f, %.9f, %.9f' %
                      (w, alpha_w[iw].real, alpha_w[iw].imag), file=fd)
            fd.close()

        print('Calculation completed at:', ctime(), file=self.fd)
        print(file=self.fd)

        return w_w, alpha_w

    def get_2d_absorption(self, w_w=None, eta=0.1,
                          q_c=[0.0, 0.0, 0.0], direction=0,
                          filename='abs_bse.csv', readfile=None, pbc=None,
                          write_eig='eig.dat'):
        """Calculate the dimensionless absorption for 2d materials.
        It is essentially related to the 2D polarizability \alpha_2d as

              ABS = 4 * np.pi * \omega * \alpha_2d / c

        where c is the velocity of light
        """

        from ase.units import alpha
        c = 1.0 / alpha

        cell_cv = self.calc.wfs.gd.cell_cv
        if not pbc:
            pbc_c = self.calc.atoms.pbc
        else:
            pbc_c = np.array(pbc)

        assert np.sum(pbc_c) == 2
        V = np.abs(np.linalg.det(cell_cv[~pbc_c][:, ~pbc_c]))
        vchi_w = self.get_vchi(w_w=w_w, eta=eta, q_c=q_c, direction=direction,
                               readfile=readfile, optical=True,
                               write_eig=write_eig)
        abs_w = -V * vchi_w.imag * w_w / Hartree / c

        if world.rank == 0 and filename is not None:
            fd = open(filename, 'w')
            for iw, w in enumerate(w_w):
                print('%.9f, %.9f' % (w, abs_w[iw]), file=fd)
            fd.close()

        print('Calculation completed at:', ctime(), file=self.fd)
        print(file=self.fd)

        return w_w, abs_w

    def par_save(self, filename, name, A_sS):
        import ase.io.ulm as ulm

        if world.size == 1:
            A_XS = A_sS
        else:
            A_XS = self.collect_A_SS(A_sS)

        if world.rank == 0:
            w = ulm.open(filename, 'w')
            if name == 'v_TS':
                w.write(w_T=self.w_T)
            # w.write(nS=self.nS)
            w.write(rhoG0_S=self.rhoG0_S)
            w.write(df_S=self.df_S)
            w.write(A_XS=A_XS)
            w.close()
        world.barrier()

    def par_load(self, filename, name):
        import ase.io.ulm as ulm

        if world.rank == 0:
            r = ulm.open(filename, 'r')
            if name == 'v_TS':
                self.w_T = r.w_T
            self.rhoG0_S = r.rhoG0_S
            self.df_S = r.df_S
            A_XS = r.A_XS
            r.close()
        else:
            if name == 'v_TS':
                self.w_T = np.zeros((self.nS), dtype=float)
            self.rhoG0_S = np.zeros((self.nS), dtype=complex)
            self.df_S = np.zeros((self.nS), dtype=float)
            A_XS = None

        world.broadcast(self.rhoG0_S, 0)
        world.broadcast(self.df_S, 0)

        if name == 'H_SS':
            self.H_sS = self.distribute_A_SS(A_XS)

        if name == 'v_TS':
            world.broadcast(self.w_T, 0)
            self.v_St = self.distribute_A_SS(A_XS, transpose=True)

    def collect_A_SS(self, A_sS):
        if world.rank == 0:
            A_SS = np.zeros((self.nS, self.nS), dtype=complex)
            A_SS[:len(A_sS)] = A_sS
            Ntot = len(A_sS)
            for rank in range(1, world.size):
                nkr, nk, ns = self.parallelisation_sizes(rank)
                buf = np.empty((ns, self.nS), dtype=complex)
                world.receive(buf, rank, tag=123)
                A_SS[Ntot:Ntot + ns] = buf
                Ntot += ns
        else:
            world.send(A_sS, 0, tag=123)
        world.barrier()
        if world.rank == 0:
            return A_SS

    def distribute_A_SS(self, A_SS, transpose=False):
        if world.rank == 0:
            for rank in range(0, world.size):
                nkr, nk, ns = self.parallelisation_sizes(rank)
                if rank == 0:
                    A_sS = A_SS[0:ns]
                    Ntot = ns
                else:
                    world.send(A_SS[Ntot:Ntot + ns], rank, tag=123)
                    Ntot += ns
        else:
            nkr, nk, ns = self.parallelisation_sizes()
            A_sS = np.empty((ns, self.nS), dtype=complex)
            world.receive(A_sS, 0, tag=123)
        world.barrier()
        if transpose:
            A_sS = A_sS.T
        return A_sS

    def parallelisation_sizes(self, rank=None):
        if rank is None:
            rank = world.rank
        nK = self.kd.nbzkpts
        myKsize = -(-nK // world.size)
        myKrange = range(rank * myKsize,
                         min((rank + 1) * myKsize, nK))
        myKsize = len(myKrange)
        mySsize = myKsize * self.nv * self.nc * self.spins
        mySsize *= (1 + self.spinors)**2
        return myKrange, myKsize, mySsize

    def get_bse_wf(self):
        pass
        # asd = 1.0

    def print_initialization(self, td, eshift, gw_skn):
        p = functools.partial(print, file=self.fd)
        p('----------------------------------------------------------')
        p('%s Hamiltonian' % self.mode)
        p('----------------------------------------------------------')
        p('Started at:  ', ctime())
        p()
        p('Atoms                          :',
          self.calc.atoms.get_chemical_formula(mode='hill'))
        p('Ground state XC functional     :', self.calc.hamiltonian.xc.name)
        p('Valence electrons              :', self.calc.wfs.setups.nvalence)
        p('Spinor calculations            :', self.spinors)
        p('Number of bands                :', self.calc.wfs.bd.nbands)
        p('Number of spins                :', self.calc.wfs.nspins)
        p('Number of k-points             :', self.kd.nbzkpts)
        p('Number of irreducible k-points :', self.kd.nibzkpts)
        p('Number of q-points             :', self.qd.nbzkpts)
        p('Number of irreducible q-points :', self.qd.nibzkpts)
        p()
        for q in self.qd.ibzk_kc:
            p('    q: [%1.4f %1.4f %1.4f]' % (q[0], q[1], q[2]))
        p()
        if gw_skn is not None:
            p('User specified BSE bands')
        p('Response PW cutoff             :', self.ecut * Hartree, 'eV')
        p('Screening bands included       :', self.nbands)
        if len(self.val_sn) == 1:
            p('Valence bands                  :', self.val_sn[0])
            p('Conduction bands               :', self.con_sn[0])
        else:
            p('Valence bands                  :', self.val_sn[0],self.val_sn[1])
            p('Conduction bands               :', self.con_sn[0],self.con_sn[1])
        if eshift is not None:
            p('Scissors operator              :', eshift * Hartree, 'eV')
        p('Tamm-Dancoff approximation     :', td)
        p('Number of pair orbitals        :', self.nS)
        p()
        p('Truncation of Coulomb kernel   :', self.truncation)
        if self.integrate_gamma == 0:
            p('Coulomb integration scheme     :', 'Analytical - gamma only')
        elif self.integrate_gamma == 1:
            p('Coulomb integration scheme     :', 'Numerical - all q-points')
        else:
            pass
        p()
        p('----------------------------------------------------------')
        p('----------------------------------------------------------')
        p()
        p('Parallelization - Total number of CPUs   : % s' % world.size)
        p('  Screened potential')
        p('    K-point/band decomposition           : % s' % world.size)
        p('  Hamiltonian')
        p('    Pair orbital decomposition           : % s' % world.size)
        p()
Пример #2
0
class Chi0:
    """Class for calculating non-interacting response functions."""
    def __init__(self,
                 calc,
                 response='density',
                 frequencies=None,
                 domega0=0.1,
                 omega2=10.0,
                 omegamax=None,
                 ecut=50,
                 gammacentered=False,
                 hilbert=True,
                 nbands=None,
                 timeordered=False,
                 eta=0.2,
                 ftol=1e-6,
                 threshold=1,
                 real_space_derivatives=False,
                 intraband=True,
                 world=mpi.world,
                 txt='-',
                 timer=None,
                 nblocks=1,
                 gate_voltage=None,
                 disable_point_group=False,
                 disable_time_reversal=False,
                 disable_non_symmorphic=True,
                 scissor=None,
                 integrationmode=None,
                 pbc=None,
                 rate=0.0,
                 eshift=0.0):
        """Construct Chi0 object.
        
        Parameters
        ----------
        calc : str
            The groundstate calculation file that the linear response
            calculation is based on.
        response : str
            Type of response function. Currently collinear, scalar options
            'density', '+-' and '-+' are implemented.
        frequencies : ndarray or None
            Array of frequencies to evaluate the response function at. If None,
            frequencies are determined using the frequency_grid function in
            gpaw.response.chi0.
        domega0, omega2, omegamax : float
            Input parameters for frequency_grid.
        ecut : float
            Energy cutoff.
        gammacentered : bool
            Center the grid of plane waves around the gamma point or q-vector
        hilbert : bool
            Switch for hilbert transform. If True, the full density response
            is determined from a hilbert transform of its spectral function.
            This is typically much faster, but does not work for imaginary
            frequencies.
        nbands : int
            Maximum band index to include.
        timeordered : bool
            Switch for calculating the time ordered density response function.
            In this case the hilbert transform cannot be used.
        eta : float
            Artificial broadening of spectra.
        ftol : float
            Threshold determining whether a band is completely filled
            (f > 1 - ftol) or completely empty (f < ftol).
        threshold : float
            Numerical threshold for the optical limit k dot p perturbation
            theory expansion (used in gpaw/response/pair.py).
        real_space_derivatives : bool
            Switch for calculating nabla matrix elements (in the optical limit)
            using a real space finite difference approximation.
        intraband : bool
            Switch for including the intraband contribution to the density
            response function.
        world : MPI comm instance
            MPI communicator.
        txt : str
            Output file.
        timer : gpaw.utilities.timing.timer instance
        nblocks : int
            Divide the response function into nblocks. Useful when the response
            function is large.
        gate_voltage : float
            Shift the fermi level by gate_voltage [Hartree].
        disable_point_group : bool
            Do not use the point group symmetry operators.
        disable_time_reversal : bool
            Do not use time reversal symmetry.
        disable_non_symmorphic : bool
            Do no use non symmorphic symmetry operators.
        scissor : tuple ([bands], shift [eV])
            Use scissor operator on bands.
        integrationmode : str
            Integrator for the kpoint integration.
            If == 'tetrahedron integration' then the kpoint integral is
            performed using the linear tetrahedron method.
        pbc : list
            Periodic directions of the system. Defaults to [True, True, True].
        eshift : float
            Shift unoccupied bands

        Attributes
        ----------
        pair : gpaw.response.pair.PairDensity instance
            Class for calculating matrix elements of pairs of wavefunctions.

        """

        self.response = response

        self.timer = timer or Timer()

        self.pair = PairDensity(calc,
                                ecut,
                                self.response,
                                ftol,
                                threshold,
                                real_space_derivatives,
                                world,
                                txt,
                                self.timer,
                                nblocks=nblocks,
                                gate_voltage=gate_voltage)

        self.disable_point_group = disable_point_group
        self.disable_time_reversal = disable_time_reversal
        self.disable_non_symmorphic = disable_non_symmorphic
        self.integrationmode = integrationmode
        self.eshift = eshift / Hartree

        calc = self.pair.calc
        self.calc = calc

        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w')
        self.fd = txt

        self.vol = abs(np.linalg.det(calc.wfs.gd.cell_cv))

        self.world = world

        if nblocks == 1:
            self.blockcomm = self.world.new_communicator([world.rank])
            self.kncomm = world
        else:
            assert world.size % nblocks == 0, world.size
            rank1 = world.rank // nblocks * nblocks
            rank2 = rank1 + nblocks
            self.blockcomm = self.world.new_communicator(range(rank1, rank2))
            ranks = range(world.rank % nblocks, world.size, nblocks)
            self.kncomm = self.world.new_communicator(ranks)

        self.nblocks = nblocks

        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w')
        self.fd = txt

        if ecut is not None:
            ecut /= Hartree

        self.ecut = ecut
        self.gammacentered = gammacentered

        self.eta = eta / Hartree
        if rate == 'eta':
            self.rate = self.eta
        else:
            self.rate = rate / Hartree
        self.domega0 = domega0 / Hartree
        self.omega2 = omega2 / Hartree
        self.omegamax = None if omegamax is None else omegamax / Hartree
        self.nbands = nbands or self.calc.wfs.bd.nbands
        self.include_intraband = intraband

        omax = self.find_maximum_frequency()

        if frequencies is None:
            if self.omegamax is None:
                self.omegamax = omax
            print('Using nonlinear frequency grid from 0 to %.3f eV' %
                  (self.omegamax * Hartree),
                  file=self.fd)
            self.wd = FrequencyDescriptor(self.domega0, self.omega2,
                                          self.omegamax)
        else:
            self.wd = ArrayDescriptor(np.asarray(frequencies) / Hartree)
            assert not hilbert

        self.omega_w = self.wd.get_data()
        self.hilbert = hilbert
        self.timeordered = bool(timeordered)

        if self.eta == 0.0:
            assert not hilbert
            assert not timeordered
            assert not self.omega_w.real.any()

        self.nocc1 = self.pair.nocc1  # number of completely filled bands
        self.nocc2 = self.pair.nocc2  # number of non-empty bands

        self.Q_aGii = None

        if pbc is not None:
            self.pbc = np.array(pbc)
        else:
            self.pbc = np.array([True, True, True])

        if self.pbc is not None and (~self.pbc).any():
            assert np.sum((~self.pbc).astype(int)) == 1, \
                print('Only one non-periodic direction supported atm.')
            print('Nonperiodic BC\'s: ', (~self.pbc), file=self.fd)

        if integrationmode is not None:
            print('Using integration method: ' + self.integrationmode,
                  file=self.fd)
        else:
            print('Using integration method: PointIntegrator', file=self.fd)

    def find_maximum_frequency(self):
        """Determine the maximum electron-hole pair transition energy."""
        self.epsmin = 10000.0
        self.epsmax = -10000.0
        for kpt in self.calc.wfs.kpt_u:
            self.epsmin = min(self.epsmin, kpt.eps_n[0])
            self.epsmax = max(self.epsmax, kpt.eps_n[self.nbands - 1])

        print('Minimum eigenvalue: %10.3f eV' % (self.epsmin * Hartree),
              file=self.fd)
        print('Maximum eigenvalue: %10.3f eV' % (self.epsmax * Hartree),
              file=self.fd)

        return self.epsmax - self.epsmin

    def calculate(self, q_c, spin='all', A_x=None):
        """Calculate response function.

        Parameters
        ----------
        q_c : list or ndarray
            Momentum vector.
        spin : str or int
            If 'all' then include all spins.
            If 0 or 1, only include this specific spin.
            (not used in transverse reponse functions)
        A_x : ndarray
            Output array. If None, the output array is created.

        Returns
        -------
        pd : Planewave descriptor
            Planewave descriptor for q_c.
        chi0_wGG : ndarray
            The response function.
        chi0_wxvG : ndarray or None
            (Only in optical limit) Wings of the density response function.
        chi0_wvv : ndarray or None
            (Only in optical limit) Head of the density response function.

        """
        wfs = self.calc.wfs

        if self.response == 'density':
            if spin == 'all':
                spins = range(wfs.nspins)
            else:
                assert spin in range(wfs.nspins)
                spins = [spin]
        else:
            if self.response == '+-':
                spins = [0]
            elif self.response == '-+':
                spins = [1]
            else:
                raise ValueError('Invalid response %s' % self.response)

        q_c = np.asarray(q_c, dtype=float)
        optical_limit = np.allclose(q_c, 0.0) and self.response == 'density'

        pd = self.get_PWDescriptor(q_c, self.gammacentered)

        self.print_chi(pd)

        if extra_parameters.get('df_dry_run'):
            print('    Dry run exit', file=self.fd)
            raise SystemExit

        nG = pd.ngmax + 2 * optical_limit
        nw = len(self.omega_w)
        mynG = (nG + self.blockcomm.size - 1) // self.blockcomm.size
        self.Ga = min(self.blockcomm.rank * mynG, nG)
        self.Gb = min(self.Ga + mynG, nG)
        # if self.blockcomm.rank == 0:
        #     assert self.Gb - self.Ga >= 3
        # assert mynG * (self.blockcomm.size - 1) < nG
        if A_x is not None:
            nx = nw * (self.Gb - self.Ga) * nG
            chi0_wGG = A_x[:nx].reshape((nw, self.Gb - self.Ga, nG))
            chi0_wGG[:] = 0.0
        else:
            chi0_wGG = np.zeros((nw, self.Gb - self.Ga, nG), complex)

        if optical_limit:
            chi0_wxvG = np.zeros((len(self.omega_w), 2, 3, nG), complex)
            chi0_wvv = np.zeros((len(self.omega_w), 3, 3), complex)
            self.plasmafreq_vv = np.zeros((3, 3), complex)
        else:
            chi0_wxvG = None
            chi0_wvv = None
            self.plasmafreq_vv = None

        if self.response == 'density':
            # Do all empty bands:
            m1 = self.nocc1
        else:
            # Do all bands
            m1 = 0

        m2 = self.nbands

        pd, chi0_wGG, chi0_wxvG, chi0_wvv = self._calculate(
            pd, chi0_wGG, chi0_wxvG, chi0_wvv, m1, m2, spins)

        return pd, chi0_wGG, chi0_wxvG, chi0_wvv

    @timer('Calculate CHI_0')
    def _calculate(self,
                   pd,
                   chi0_wGG,
                   chi0_wxvG,
                   chi0_wvv,
                   m1,
                   m2,
                   spins,
                   extend_head=True):
        """In-place calculation of the response function.
        
        Parameters
        ----------
        q_c : list or ndarray
            Momentum vector..
        pd : Planewave descriptor
            Planewave descriptor for q_c.
        chi0_wGG : ndarray
            The response function.
        chi0_wxvG : ndarray or None
            Wings of the density response function.
        chi0_wvv : ndarray or None
            Head of the density response function.
        m1 : int
            Lower band cutoff for band summation
        m2 : int
            Upper band cutoff for band summation
        spins : str or list(ints)
            If 'all' then include all spins.
            If [0] or [1], only include this specific spin (and flip it,
            if calculating the transverse magnetic response).
        extend_head : bool
            If True: Extend the wings and head of chi in the optical limit to
            take into account the non-analytic nature of chi. Effectively
            means that chi has dimension (nw, nG + 2, nG + 2) in the optical
            limit. This simplifies the code and should only be switched off
            for parts of the code that do not support this feature i.e., GW
            RPA total energy and RALDA.
        """

        # Parse spins
        wfs = self.calc.wfs
        if spins == 'all':
            spins = range(wfs.nspins)
        elif spins == 'pm':
            spins = [0]
        elif spins == 'mp':
            spins = [1]
        else:
            for spin in spins:
                assert spin in range(wfs.nspins)

        # Are we calculating the optical limit.
        optical_limit = np.allclose(pd.kd.bzk_kc[0], 0.0) and \
            self.response == 'density'

        # Reset PAW correction in case momentum has change
        self.Q_aGii = self.pair.initialize_paw_corrections(pd)
        A_wxx = chi0_wGG  # Change notation

        # Initialize integrator. The integrator class is a general class
        # for brillouin zone integration that can integrate user defined
        # functions over user defined domains and sum over bands.
        if self.integrationmode is None or \
           self.integrationmode == 'point integration':
            integrator = PointIntegrator(self.pair.calc.wfs.gd.cell_cv,
                                         response=self.response,
                                         comm=self.world,
                                         timer=self.timer,
                                         txt=self.fd,
                                         eshift=self.eshift,
                                         nblocks=self.nblocks)
            intnoblock = PointIntegrator(self.pair.calc.wfs.gd.cell_cv,
                                         response=self.response,
                                         comm=self.world,
                                         timer=self.timer,
                                         eshift=self.eshift,
                                         txt=self.fd)
        elif self.integrationmode == 'tetrahedron integration':
            integrator = TetrahedronIntegrator(self.pair.calc.wfs.gd.cell_cv,
                                               response=self.response,
                                               comm=self.world,
                                               timer=self.timer,
                                               eshift=self.eshift,
                                               txt=self.fd,
                                               nblocks=self.nblocks)
            intnoblock = TetrahedronIntegrator(self.pair.calc.wfs.gd.cell_cv,
                                               response=self.response,
                                               comm=self.world,
                                               timer=self.timer,
                                               eshift=self.eshift,
                                               txt=self.fd)
        else:
            print('Integration mode ' + self.integrationmode +
                  ' not implemented.',
                  file=self.fd)
            raise NotImplementedError

        # The integration domain is determined by the following function
        # that reduces the integration domain to the irreducible zone
        # of the little group of q.
        bzk_kv, PWSA = self.get_kpoints(pd,
                                        integrationmode=self.integrationmode)
        domain = (bzk_kv, spins)

        if self.integrationmode == 'tetrahedron integration':
            # If there are non-periodic directions it is possible that the
            # integration domain is not compatible with the symmetry operations
            # which essentially means that too large domains will be
            # integrated. We normalize by vol(BZ) / vol(domain) to make
            # sure that to fix this.
            domainvol = convex_hull_volume(bzk_kv) * PWSA.how_many_symmetries()
            bzvol = (2 * np.pi)**3 / self.vol
            factor = bzvol / domainvol
        else:
            factor = 1

        prefactor = (2 * factor * PWSA.how_many_symmetries() /
                     (wfs.nspins * (2 * np.pi)**3))  # Remember prefactor

        if self.integrationmode is None:
            if self.calc.wfs.kd.refine_info is not None:
                nbzkpts = self.calc.wfs.kd.refine_info.mhnbzkpts
            else:
                nbzkpts = self.calc.wfs.kd.nbzkpts
            prefactor *= len(bzk_kv) / nbzkpts

        # The functions that are integrated are defined in the bottom
        # of this file and take a number of constant keyword arguments
        # which the integrator class accepts through the use of the
        # kwargs keyword.
        kd = self.calc.wfs.kd
        mat_kwargs = {
            'kd': kd,
            'pd': pd,
            'n1': 0,
            'm1': m1,
            'm2': m2,
            'symmetry': PWSA,
            'integrationmode': self.integrationmode
        }
        eig_kwargs = {'kd': kd, 'm1': m1, 'm2': m2, 'n1': 0, 'pd': pd}
        if self.response == 'density':
            mat_kwargs['n2'] = self.nocc2
            eig_kwargs['n2'] = self.nocc2
        else:
            mat_kwargs['n2'] = self.nbands
            eig_kwargs['n2'] = self.nbands

        if not extend_head:
            mat_kwargs['extend_head'] = False

        # Determine what "kind" of integral to make.
        extraargs = {}  # Initialize extra arguments to integration method.
        if self.eta == 0:
            # If eta is 0 then we must be working with imaginary frequencies.
            # In this case chi is hermitian and it is therefore possible to
            # reduce the computational costs by a only computing half of the
            # response function.
            kind = 'hermitian response function'
        elif self.hilbert:
            # The spectral function integrator assumes that the form of the
            # integrand is a function (a matrix element) multiplied by
            # a delta function and should return a function of at user defined
            # x's (frequencies). Thus the integrand is tuple of two functions
            # and takes an additional argument (x).
            kind = 'spectral function'
        else:
            # Otherwise, we can make no simplifying assumptions of the
            # form of the response function and we simply perform a brute
            # force calculation of the response function.
            kind = 'response function'
            extraargs['eta'] = self.eta
            extraargs['timeordered'] = self.timeordered

        if optical_limit and not extend_head:
            wings = True
        else:
            wings = False

        A_wxx /= prefactor
        if wings:
            chi0_wxvG /= prefactor
            chi0_wvv /= prefactor

        # Integrate response function
        print('Integrating response function.', file=self.fd)
        integrator.integrate(
            kind=kind,  # Kind of integral
            domain=domain,  # Integration domain
            integrand=(
                self.get_matrix_element,  # Integrand
                self.get_eigenvalues),  # Integrand
            x=self.wd,  # Frequency Descriptor
            kwargs=(mat_kwargs, eig_kwargs),
            # Arguments for integrand functions
            out_wxx=A_wxx,  # Output array
            **extraargs)
        # extraargs: Extra arguments to integration method
        if wings:
            mat_kwargs['extend_head'] = True
            mat_kwargs['block'] = False
            if self.eta == 0:
                extraargs['eta'] = self.eta
            # This is horrible but we need to update the wings manually
            # in order to make them work with ralda, RPA and GW. This entire
            # section can be deleted in the future if the ralda and RPA code is
            # made compatible with the head and wing extension that other parts
            # of the code is using.
            chi0_wxvx = np.zeros(
                np.array(chi0_wxvG.shape) + [0, 0, 0, 2],
                complex)  # Notice the wxv"x" for head extend
            intnoblock.integrate(
                kind=kind + ' wings',  # kind'o int.
                domain=domain,  # Integration domain
                integrand=(
                    self.get_matrix_element,  # Intgrnd
                    self.get_eigenvalues),  # Integrand
                x=self.wd,  # Frequency Descriptor
                kwargs=(mat_kwargs, eig_kwargs),
                # Arguments for integrand functions
                out_wxx=chi0_wxvx,  # Output array
                **extraargs)

        if self.hilbert:
            # The integrator only returns the spectral function and a Hilbert
            # transform is performed to return the real part of the density
            # response function.
            with self.timer('Hilbert transform'):
                omega_w = self.wd.get_data()  # Get frequencies
                # Make Hilbert transform
                ht = HilbertTransform(np.array(omega_w),
                                      self.eta,
                                      timeordered=self.timeordered)
                ht(A_wxx)
                if wings:
                    ht(chi0_wxvx)

        # In the optical limit additional work must be performed
        # for the intraband response.
        # Only compute the intraband response if there are partially
        # unoccupied bands and only if the user has not disabled its
        # calculation using the include_intraband keyword.
        if optical_limit and self.nocc1 != self.nocc2:
            # The intraband response is essentially just the calculation
            # of the free space Drude plasma frequency. The calculation is
            # similarly to the interband transitions documented above.
            mat_kwargs = {
                'kd': kd,
                'symmetry': PWSA,
                'n1': self.nocc1,
                'n2': self.nocc2,
                'pd': pd
            }  # Integrand arguments
            eig_kwargs = {
                'kd': kd,
                'n1': self.nocc1,
                'n2': self.nocc2,
                'pd': pd
            }  # Integrand arguments
            domain = (bzk_kv, spins)  # Integration domain
            fermi_level = self.pair.fermi_level  # Fermi level

            # Not so elegant solution but it works
            plasmafreq_wvv = np.zeros((1, 3, 3), complex)  # Output array
            print('Integrating intraband density response.', file=self.fd)

            # Depending on which integration method is used we
            # have to pass different arguments
            extraargs = {}
            if self.integrationmode is None:
                # Calculate intraband transitions at finite fermi smearing
                extraargs['intraband'] = True  # Calculate intraband
            elif self.integrationmode == 'tetrahedron integration':
                # Calculate intraband transitions at T=0
                extraargs['x'] = ArrayDescriptor([-fermi_level])

            intnoblock.integrate(
                kind='spectral function',  # Kind of integral
                domain=domain,  # Integration domain
                # Integrands
                integrand=(self.get_intraband_response,
                           self.get_intraband_eigenvalue),
                # Integrand arguments
                kwargs=(mat_kwargs, eig_kwargs),
                out_wxx=plasmafreq_wvv,  # Output array
                **extraargs)  # Extra args for int. method

            # Again, not so pretty but that's how it is
            plasmafreq_vv = plasmafreq_wvv[0].copy()
            if self.include_intraband:
                if extend_head:
                    va = min(self.Ga, 3)
                    vb = min(self.Gb, 3)
                    A_wxx[:, :vb - va, :3] += (
                        plasmafreq_vv[va:vb] /
                        (self.omega_w[:, np.newaxis, np.newaxis] + 1e-10 +
                         self.rate * 1j)**2)
                elif self.blockcomm.rank == 0:
                    A_wxx[:, 0,
                          0] += (plasmafreq_vv[2, 2] /
                                 (self.omega_w + 1e-10 + self.rate * 1j)**2)

            # Save the plasmafrequency
            try:
                self.plasmafreq_vv += 4 * np.pi * plasmafreq_vv * prefactor
            except AttributeError:
                self.plasmafreq_vv = 4 * np.pi * plasmafreq_vv * prefactor

            PWSA.symmetrize_wvv(self.plasmafreq_vv[np.newaxis])
            print('Plasma frequency:', file=self.fd)
            print((self.plasmafreq_vv**0.5 * Hartree).round(2), file=self.fd)

        # The response function is integrated only over the IBZ. The
        # chi calculated above must therefore be extended to include the
        # response from the full BZ. This extension can be performed as a
        # simple post processing of the response function that makes
        # sure that the response function fulfills the symmetries of the little
        # group of q. Due to the specific details of the implementation the chi
        # calculated above is normalized by the number of symmetries (as seen
        # below) and then symmetrized.
        A_wxx *= prefactor

        tmpA_wxx = self.redistribute(A_wxx)
        if extend_head:
            PWSA.symmetrize_wxx(tmpA_wxx, optical_limit=optical_limit)
        else:
            PWSA.symmetrize_wGG(tmpA_wxx)
            if wings:
                chi0_wxvG += chi0_wxvx[..., 2:]
                chi0_wvv += chi0_wxvx[:, 0, :3, :3]
                PWSA.symmetrize_wxvG(chi0_wxvG)
                PWSA.symmetrize_wvv(chi0_wvv)
        self.redistribute(tmpA_wxx, A_wxx)

        # If point summation was used then the normalization of the
        # response function is not right and we have to make up for this
        # fact.

        if wings:
            chi0_wxvG *= prefactor
            chi0_wvv *= prefactor

        # In the optical limit, we have extended the wings and the head to
        # account for their nonanalytic behaviour which means that the size of
        # the chi0_wGG matrix is nw * (nG + 2)**2. Below we extract these
        # parameters.

        if optical_limit and extend_head:
            # The wings are extracted
            chi0_wxvG[:, 1, :,
                      self.Ga:self.Gb] = np.transpose(A_wxx[..., 0:3],
                                                      (0, 2, 1))
            va = min(self.Ga, 3)
            vb = min(self.Gb, 3)
            # print(self.world.rank, va, vb, chi0_wxvG[:, 0, va:vb].shape,
            #       A_wxx[:, va:vb].shape, A_wxx.shape)
            chi0_wxvG[:, 0, va:vb] = A_wxx[:, :vb - va]

            # Add contributions on different ranks
            self.blockcomm.sum(chi0_wxvG)
            chi0_wvv[:] = chi0_wxvG[:, 0, :3, :3]
            chi0_wxvG = chi0_wxvG[..., 2:]  # Jesus, this is complicated

            # The head is extracted
            # if self.blockcomm.rank == 0:
            #     chi0_wvv[:] = A_wxx[:, :3, :3]
            # self.blockcomm.broadcast(chi0_wvv, 0)

            # It is easiest to redistribute over freqs to pick body
            tmpA_wxx = self.redistribute(A_wxx)
            chi0_wGG = tmpA_wxx[:, 2:, 2:]
            chi0_wGG = self.redistribute(chi0_wGG)

        elif optical_limit:
            # Since chi_wGG is nonanalytic in the head
            # and wings we have to take care that
            # these are handled correctly. Note that
            # it is important that the wings are overwritten first.
            chi0_wGG[:, :, 0] = chi0_wxvG[:, 1, 2, self.Ga:self.Gb]

            if self.blockcomm.rank == 0:
                chi0_wGG[:, 0, :] = chi0_wxvG[:, 0, 2, :]
                chi0_wGG[:, 0, 0] = chi0_wvv[:, 2, 2]
        else:
            chi0_wGG = A_wxx

        return pd, chi0_wGG, chi0_wxvG, chi0_wvv

    def get_PWDescriptor(self, q_c, gammacentered=False):
        """Get the planewave descriptor of q_c."""
        qd = KPointDescriptor([q_c])
        pd = PWDescriptor(self.ecut,
                          self.calc.wfs.gd,
                          complex,
                          qd,
                          gammacentered=gammacentered)
        return pd

    @timer('Get kpoints')
    def get_kpoints(self, pd, integrationmode=None):
        """Get the integration domain."""
        # Use symmetries
        PWSA = PWSymmetryAnalyzer
        PWSA = PWSA(self.calc.wfs.kd,
                    pd,
                    timer=self.timer,
                    txt=self.fd,
                    disable_point_group=self.disable_point_group,
                    disable_time_reversal=self.disable_time_reversal,
                    disable_non_symmorphic=self.disable_non_symmorphic)

        if integrationmode is None:
            K_gK = PWSA.group_kpoints()
            bzk_kc = np.array(
                [self.calc.wfs.kd.bzk_kc[K_K[0]] for K_K in K_gK])
        elif integrationmode == 'tetrahedron integration':
            bzk_kc = PWSA.get_reduced_kd(pbc_c=self.pbc).bzk_kc
            if (~self.pbc).any():
                bzk_kc = np.append(bzk_kc,
                                   bzk_kc + (~self.pbc).astype(int),
                                   axis=0)

        bzk_kv = np.dot(bzk_kc, pd.gd.icell_cv) * 2 * np.pi

        return bzk_kv, PWSA

    @timer('Get matrix element')
    def get_matrix_element(self,
                           k_v,
                           s,
                           n1=None,
                           n2=None,
                           m1=None,
                           m2=None,
                           pd=None,
                           kd=None,
                           symmetry=None,
                           integrationmode=None,
                           extend_head=True,
                           block=True):
        """A function that returns pair-densities.

        A pair density is defined as::

         <snk| e^(-i (q + G) r) |s'mk+q>,

        where s and s' are spins, n and m are band indices, k is
        the kpoint and q is the momentum transfer. For dielectric
        reponse s'=s, for the transverse magnetic reponse
        s' is flipped with respect to s.
        
        Parameters
        ----------
        k_v : ndarray
            Kpoint coordinate in cartesian coordinates.
        s : int
            Spin index.
        n1 : int
            Lower occupied band index.
        n2 : int
            Upper occupied band index.
        m1 : int
            Lower unoccupied band index.
        m2 : int
            Upper unoccupied band index.
        pd : PlanewaveDescriptor instance
        kd : KpointDescriptor instance
            Calculator kpoint descriptor.
        symmetry: gpaw.response.pair.PWSymmetryAnalyzer instance
            PWSA object for handling symmetries of the kpoints.
        integrationmode : str
            The integration mode employed.
        extend_head: Bool
            Extend the head to include non-analytic behaviour

        Return
        ------
        n_nmG : ndarray
            Pair densities.
        """
        k_c = np.dot(pd.gd.cell_cv, k_v) / (2 * np.pi)

        q_c = pd.kd.bzk_kc[0]

        optical_limit = np.allclose(q_c, 0.0) and self.response == 'density'

        extrapolate_q = False
        if self.calc.wfs.kd.refine_info is not None:
            K1 = self.pair.find_kpoint(k_c)
            label = kd.refine_info.label_k[K1]
            if label == 'zero':
                return None
            elif (kd.refine_info.almostoptical and label == 'mh'):
                if not hasattr(self, 'pd0'):
                    self.pd0 = self.get_PWDescriptor([
                        0,
                    ] * 3)
                pd = self.pd0
                extrapolate_q = True

        nG = pd.ngmax
        weight = np.sqrt(
            symmetry.get_kpoint_weight(k_c) / symmetry.how_many_symmetries())
        if self.Q_aGii is None:
            self.Q_aGii = self.pair.initialize_paw_corrections(pd)

        kptpair = self.pair.get_kpoint_pair(pd,
                                            s,
                                            k_c,
                                            n1,
                                            n2,
                                            m1,
                                            m2,
                                            block=block)

        m_m = np.arange(m1, m2)
        n_n = np.arange(n1, n2)

        n_nmG = self.pair.get_pair_density(pd,
                                           kptpair,
                                           n_n,
                                           m_m,
                                           Q_aGii=self.Q_aGii,
                                           block=block)

        if integrationmode is None:
            n_nmG *= weight

        df_nm = kptpair.get_occupation_differences(n_n, m_m)
        if not self.response == 'density':
            df_nm = np.abs(df_nm)
        df_nm[df_nm <= 1e-20] = 0.0
        n_nmG *= df_nm[..., np.newaxis]**0.5

        if extrapolate_q:
            q_v = np.dot(q_c, pd.gd.icell_cv) * (2 * np.pi)
            nq_nm = np.dot(n_nmG[:, :, :3], q_v)
            n_nmG = n_nmG[:, :, 2:]
            n_nmG[:, :, 0] = nq_nm

        if not extend_head and optical_limit:
            n_nmG = np.copy(n_nmG[:, :, 2:])
            optical_limit = False

        if extend_head and optical_limit:
            return n_nmG.reshape(-1, nG + 2 * optical_limit)
        else:
            return n_nmG.reshape(-1, nG)

    @timer('Get eigenvalues')
    def get_eigenvalues(self,
                        k_v,
                        s,
                        n1=None,
                        n2=None,
                        m1=None,
                        m2=None,
                        kd=None,
                        pd=None,
                        wfs=None,
                        filter=False):
        """A function that can return the eigenvalues.

        A simple function describing the integrand of
        the response function which gives an output that
        is compatible with the gpaw k-point integration
        routines."""
        if wfs is None:
            wfs = self.calc.wfs

        kd = wfs.kd
        k_c = np.dot(pd.gd.cell_cv, k_v) / (2 * np.pi)
        q_c = pd.kd.bzk_kc[0]
        K1 = self.pair.find_kpoint(k_c)
        K2 = self.pair.find_kpoint(k_c + q_c)

        ik1 = kd.bz2ibz_k[K1]
        ik2 = kd.bz2ibz_k[K2]
        kpt1 = wfs.kpt_u[s * wfs.kd.nibzkpts + ik1]
        if self.response in ['+-', '-+']:
            s2 = 1 - s
        else:
            s2 = s
        kpt2 = wfs.kpt_u[s2 * wfs.kd.nibzkpts + ik2]
        deps_nm = np.subtract(kpt1.eps_n[n1:n2][:, np.newaxis],
                              kpt2.eps_n[m1:m2])

        if filter:
            fermi_level = self.pair.fermi_level
            deps_nm[kpt1.eps_n[n1:n2] > fermi_level, :] = np.nan
            deps_nm[:, kpt2.eps_n[m1:m2] < fermi_level] = np.nan

        return deps_nm.reshape(-1)

    def get_intraband_response(self,
                               k_v,
                               s,
                               n1=None,
                               n2=None,
                               kd=None,
                               symmetry=None,
                               pd=None,
                               integrationmode=None):
        k_c = np.dot(pd.gd.cell_cv, k_v) / (2 * np.pi)
        kpt1 = self.pair.get_k_point(s, k_c, n1, n2)
        n_n = range(n1, n2)

        vel_nv = self.pair.intraband_pair_density(kpt1, n_n)

        if self.integrationmode is None:
            f_n = kpt1.f_n
            width = self.calc.occupations.width
            if width > 1e-15:
                dfde_n = -1. / width * (f_n - f_n**2.0)
            else:
                dfde_n = np.zeros_like(f_n)
            vel_nv *= np.sqrt(-dfde_n[:, np.newaxis])
            weight = np.sqrt(
                symmetry.get_kpoint_weight(k_c) /
                symmetry.how_many_symmetries())
            vel_nv *= weight

        return vel_nv

    @timer('Intraband eigenvalue')
    def get_intraband_eigenvalue(self,
                                 k_v,
                                 s,
                                 n1=None,
                                 n2=None,
                                 kd=None,
                                 pd=None):
        """A function that can return the eigenvalues.

        A simple function describing the integrand of
        the response function which gives an output that
        is compatible with the gpaw k-point integration
        routines."""
        wfs = self.calc.wfs
        kd = wfs.kd
        k_c = np.dot(pd.gd.cell_cv, k_v) / (2 * np.pi)
        K1 = self.pair.find_kpoint(k_c)
        ik = kd.bz2ibz_k[K1]
        kpt1 = wfs.kpt_u[s * wfs.kd.nibzkpts + ik]

        return kpt1.eps_n[n1:n2]

    @timer('redist')
    def redistribute(self, in_wGG, out_x=None):
        """Redistribute array.

        Switch between two kinds of parallel distributions:

        1) parallel over G-vectors (second dimension of in_wGG)
        2) parallel over frequency (first dimension of in_wGG)

        Returns new array using the memory in the 1-d array out_x.
        """

        comm = self.blockcomm

        if comm.size == 1:
            return in_wGG

        nw = len(self.omega_w)
        nG = in_wGG.shape[2]
        mynw = (nw + comm.size - 1) // comm.size
        mynG = (nG + comm.size - 1) // comm.size

        bg1 = BlacsGrid(comm, comm.size, 1)
        bg2 = BlacsGrid(comm, 1, comm.size)
        md1 = BlacsDescriptor(bg1, nw, nG**2, mynw, nG**2)
        md2 = BlacsDescriptor(bg2, nw, nG**2, nw, mynG * nG)

        if len(in_wGG) == nw:
            mdin = md2
            mdout = md1
        else:
            mdin = md1
            mdout = md2

        r = Redistributor(comm, mdin, mdout)

        outshape = (mdout.shape[0], mdout.shape[1] // nG, nG)
        if out_x is None:
            out_wGG = np.empty(outshape, complex)
        else:
            out_wGG = out_x[:np.product(outshape)].reshape(outshape)

        r.redistribute(in_wGG.reshape(mdin.shape),
                       out_wGG.reshape(mdout.shape))

        return out_wGG

    @timer('dist freq')
    def distribute_frequencies(self, chi0_wGG):
        """Distribute frequencies to all cores."""

        world = self.world
        comm = self.blockcomm

        if world.size == 1:
            return chi0_wGG

        nw = len(self.omega_w)
        nG = chi0_wGG.shape[2]
        mynw = (nw + world.size - 1) // world.size
        mynG = (nG + comm.size - 1) // comm.size

        wa = min(world.rank * mynw, nw)
        wb = min(wa + mynw, nw)

        if self.blockcomm.size == 1:
            return chi0_wGG[wa:wb].copy()

        if self.kncomm.rank == 0:
            bg1 = BlacsGrid(comm, 1, comm.size)
            in_wGG = chi0_wGG.reshape((nw, -1))
        else:
            bg1 = DryRunBlacsGrid(mpi.serial_comm, 1, 1)
            in_wGG = np.zeros((0, 0), complex)
        md1 = BlacsDescriptor(bg1, nw, nG**2, nw, mynG * nG)

        bg2 = BlacsGrid(world, world.size, 1)
        md2 = BlacsDescriptor(bg2, nw, nG**2, mynw, nG**2)

        r = Redistributor(world, md1, md2)
        shape = (wb - wa, nG, nG)
        out_wGG = np.empty(shape, complex)
        r.redistribute(in_wGG, out_wGG.reshape((wb - wa, nG**2)))

        return out_wGG

    def print_chi(self, pd):
        calc = self.calc
        gd = calc.wfs.gd

        if extra_parameters.get('df_dry_run'):
            from gpaw.mpi import DryRunCommunicator
            size = extra_parameters['df_dry_run']
            world = DryRunCommunicator(size)
        else:
            world = self.world

        q_c = pd.kd.bzk_kc[0]
        nw = len(self.omega_w)
        ecut = self.ecut * Hartree
        ns = calc.wfs.nspins
        nbands = self.nbands
        nk = calc.wfs.kd.nbzkpts
        nik = calc.wfs.kd.nibzkpts
        ngmax = pd.ngmax
        eta = self.eta * Hartree
        wsize = world.size
        knsize = self.kncomm.size
        nocc = self.nocc1
        npocc = self.nocc2
        ngridpoints = gd.N_c[0] * gd.N_c[1] * gd.N_c[2]
        nstat = (ns * npocc + world.size - 1) // world.size
        occsize = nstat * ngridpoints * 16. / 1024**2
        bsize = self.blockcomm.size
        chisize = nw * pd.ngmax**2 * 16. / 1024**2 / bsize

        p = partial(print, file=self.fd)

        p('%s' % ctime())
        p('Called response.chi0.calculate with')
        p('    q_c: [%f, %f, %f]' % (q_c[0], q_c[1], q_c[2]))
        p('    Number of frequency points: %d' % nw)
        p('    Planewave cutoff: %f' % ecut)
        p('    Number of spins: %d' % ns)
        p('    Number of bands: %d' % nbands)
        p('    Number of kpoints: %d' % nk)
        p('    Number of irredicible kpoints: %d' % nik)
        p('    Number of planewaves: %d' % ngmax)
        p('    Broadening (eta): %f' % eta)
        p('    world.size: %d' % wsize)
        p('    kncomm.size: %d' % knsize)
        p('    blockcomm.size: %d' % bsize)
        p('    Number of completely occupied states: %d' % nocc)
        p('    Number of partially occupied states: %d' % npocc)
        p()
        p('    Memory estimate of potentially large arrays:')
        p('        chi0_wGG: %f M / cpu' % chisize)
        p('        Occupied states: %f M / cpu' % occsize)
        p('        Memory usage before allocation: %f M / cpu' %
          (maxrss() / 1024**2))
        p()