Пример #1
0
    def soft_pseudo(self, paw, H_nn, h_nn=None, u=0):
        if h_nn is None:
            h_nn = H_nn
        kpt = paw.wfs.kpt_u[u]
        pd = self.pair_density
        deg = 2 / self.nspins
        fmin = 1e-9
        Htpsit_nG = np.zeros(kpt.psit_nG.shape, self.dtype)

        for n1 in range(self.nbands):
            psit1_G = kpt.psit_nG[n1]
            f1 = kpt.f_n[n1] / deg
            for n2 in range(n1, self.nbands):
                psit2_G = kpt.psit_nG[n2]
                f2 = kpt.f_n[n2] / deg
                if f1 < fmin and f2 < fmin:
                    continue

                pd.initialize(kpt, n1, n2)
                pd.get_coarse(self.nt_G)
                pd.add_compensation_charges(self.nt_G, self.rhot_g)
                self.poisson_solve(self.vt_g,
                                   -self.rhot_g,
                                   charge=-float(n1 == n2),
                                   eps=1e-12,
                                   zero_initial_phi=True)
                self.restrict(self.vt_g, self.vt_G)
                Htpsit_nG[n1] += f2 * self.vt_G * psit2_G
                if n1 != n2:
                    Htpsit_nG[n2] += f1 * self.vt_G * psit1_G

                v_aL = paw.density.ghat.dict()
                paw.density.ghat.integrate(self.vt_g, v_aL)
                for a, v_L in v_aL.items():
                    v_ii = unpack(np.dot(paw.wfs.setups[a].Delta_pL, v_L))
                    P_ni = kpt.P_ani[a]
                    h_nn[:, n1] += f2 * np.dot(P_ni, np.dot(v_ii, P_ni[n2]))
                    if n1 != n2:
                        h_nn[:,
                             n2] += f1 * np.dot(P_ni, np.dot(v_ii, P_ni[n1]))

        symmetrize(h_nn)  # Grrrr why!!! XXX

        # Fill in lower triangle
        r2k(0.5 * self.dv, kpt.psit_nG[:], Htpsit_nG, 1.0, H_nn)

        # Fill in upper triangle from lower
        tri2full(H_nn, 'L')
Пример #2
0
    def soft_pseudo(self, paw, H_nn, h_nn=None, u=0):
        if h_nn is None:
            h_nn = H_nn
        kpt = paw.wfs.kpt_u[u]
        pd = self.pair_density
        deg = 2 / self.nspins
        fmin = 1e-9
        Htpsit_nG = np.zeros(kpt.psit_nG.shape, self.dtype)

        for n1 in range(self.nbands):
            psit1_G = kpt.psit_nG[n1]
            f1 = kpt.f_n[n1] / deg
            for n2 in range(n1, self.nbands):
                psit2_G = kpt.psit_nG[n2]
                f2 = kpt.f_n[n2] / deg
                if f1 < fmin and f2 < fmin:
                    continue

                pd.initialize(kpt, n1, n2)
                pd.get_coarse(self.nt_G)
                pd.add_compensation_charges(self.nt_G, self.rhot_g)
                self.poisson_solve(self.vt_g, -self.rhot_g,
                                   charge=-float(n1 == n2), eps=1e-12,
                                   zero_initial_phi=True)
                self.restrict(self.vt_g, self.vt_G)
                Htpsit_nG[n1] += f2 * self.vt_G * psit2_G
                if n1 != n2:
                    Htpsit_nG[n2] += f1 * self.vt_G * psit1_G

                v_aL = paw.density.ghat.dict()
                paw.density.ghat.integrate(self.vt_g, v_aL)
                for a, v_L in v_aL.items():
                    v_ii = unpack(np.dot(paw.wfs.setups[a].Delta_pL, v_L))
                    P_ni = kpt.P_ani[a]
                    h_nn[:, n1] += f2 * np.dot(P_ni, np.dot(v_ii, P_ni[n2]))
                    if n1 != n2:
                        h_nn[:, n2] += f1 * np.dot(P_ni,
                                                   np.dot(v_ii, P_ni[n1]))

        symmetrize(h_nn)  # Grrrr why!!! XXX

        # Fill in lower triangle
        r2k(0.5 * self.dv, kpt.psit_nG[:], Htpsit_nG, 1.0, H_nn)

        # Fill in upper triangle from lower
        tri2full(H_nn, 'L')
Пример #3
0
    def correct_hamiltonian_matrix(self, kpt, H_nn):
        if not hasattr(kpt, 'vxx_ani'):
            return

        if self.gd.comm.rank > 0:
            H_nn[:] = 0.0
            
        nocc = self.nocc_s[kpt.s]
        for a, P_ni in kpt.P_ani.items():
            H_nn[:nocc, :nocc] += symmetrize(np.inner(P_ni[:nocc],
                                                      kpt.vxx_ani[a]))
        self.gd.comm.sum(H_nn)
        
        H_nn[:nocc, nocc:] = 0.0
        H_nn[nocc:, :nocc] = 0.0
Пример #4
0
    def correct_hamiltonian_matrix(self, kpt, H_nn):
        if not hasattr(kpt, 'vxx_ani'):
            return

        # if self.gd.comm.rank > 0:
        #    H_nn[:] = 0.0

        nocc = self.nocc_s[kpt.s]
        nbands = len(kpt.vt_nG)
        for a, P_ni in kpt.P_ani.items():
            H_nn[:nbands, :nbands] += symmetrize(
                np.inner(P_ni[:nbands], kpt.vxx_ani[a]))
        # self.gd.comm.sum(H_nn)

        if not self.unocc or self.excitation is not None:
            H_nn[:nocc, nocc:] = 0.0
            H_nn[nocc:, :nocc] = 0.0
Пример #5
0
    def apply_orbital_dependent_hamiltonian(self,
                                            kpt,
                                            psit_nG,
                                            Htpsit_nG=None,
                                            dH_asp=None):
        if kpt.f_n is None:
            return

        deg = 2 // self.nspins  # Spin degeneracy
        hybrid = self.hybrid
        P_ani = kpt.P_ani
        setups = self.setups
        is_cam = self.is_cam

        vt_g = self.finegd.empty()
        if self.gd is not self.finegd:
            vt_G = self.gd.empty()
        if self.rsf == 'Yukawa':
            y_vt_g = self.finegd.empty()
            # if self.gd is not self.finegd:
            #     y_vt_G = self.gd.empty()

        nocc = int(ceil(kpt.f_n.sum())) // (3 - self.nspins)
        if self.excitation is not None:
            ex_band = nocc - self.excited - 1
            if self.excitation == 'singlet':
                ex_weight = -1
            elif self.excitation == 'triplet':
                ex_weight = +1
            else:
                ex_weight = 0

        if self.unocc or self.excitation is not None:
            nbands = len(kpt.f_n)
        else:
            nbands = nocc
        self.nocc_s[kpt.s] = nocc

        if Htpsit_nG is not None:
            kpt.vt_nG = self.gd.empty(nbands)
            kpt.vxx_ani = {}
            kpt.vxx_anii = {}
            for a, P_ni in P_ani.items():
                I = P_ni.shape[1]
                kpt.vxx_ani[a] = np.zeros((nbands, I))
                kpt.vxx_anii[a] = np.zeros((nbands, I, I))

        exx = 0.0
        ekin = 0.0

        # XXXX nbands can be different numbers on different cpus!
        # That means some will execute the loop and others not.
        # And deadlocks with augment-grids.

        # Determine pseudo-exchange
        for n1 in range(nbands):
            psit1_G = psit_nG[n1]
            f1 = kpt.f_n[n1] / deg
            for n2 in range(n1, nbands):
                psit2_G = psit_nG[n2]
                f2 = kpt.f_n[n2] / deg
                if n1 != n2 and f1 == 0 and f1 == f2:
                    continue  # Don't work on double unocc. bands
                # Double count factor:
                dc = (1 + (n1 != n2)) * deg
                nt_G, rhot_g = self.calculate_pair_density(
                    n1, n2, psit_nG, P_ani)
                vt_g[:] = 0.0
                # XXXXX This will go wrong because we are solving the
                # Poisson equation on the distribution of gd, not finegd
                # Or maybe it's fixed now

                self.poissonsolver.solve(vt_g,
                                         -rhot_g,
                                         charge=-float(n1 == n2),
                                         eps=1e-12,
                                         zero_initial_phi=True)
                vt_g *= hybrid
                if self.rsf == 'Yukawa':
                    y_vt_g[:] = 0.0
                    self.screened_poissonsolver.solve(y_vt_g,
                                                      -rhot_g,
                                                      charge=-float(n1 == n2),
                                                      eps=1e-12,
                                                      zero_initial_phi=True)
                    if is_cam:  # Cam like correction
                        y_vt_g *= self.cam_beta
                    else:
                        y_vt_g *= hybrid
                    vt_g -= y_vt_g
                if self.gd is self.finegd:
                    vt_G = vt_g
                else:
                    self.restrictor.apply(vt_g, vt_G)

                # Integrate the potential on fine and coarse grids
                int_fine = self.finegd.integrate(vt_g * rhot_g)
                int_coarse = self.gd.integrate(vt_G * nt_G)
                if self.gd.comm.rank == 0:  # only add to energy on master CPU
                    exx += 0.5 * dc * f1 * f2 * int_fine
                    ekin -= dc * f1 * f2 * int_coarse
                if Htpsit_nG is not None:
                    Htpsit_nG[n1] += f2 * vt_G * psit2_G
                    if n1 == n2:
                        kpt.vt_nG[n1] = f1 * vt_G
                        if self.excitation is not None and n1 == ex_band:
                            Htpsit_nG[nocc:] += f1 * vt_G * psit_nG[nocc:]
                    else:
                        if self.excitation is None or n1 != ex_band \
                                or n2 < nocc:
                            Htpsit_nG[n2] += f1 * vt_G * psit1_G
                        else:
                            Htpsit_nG[n2] += f1 * ex_weight * vt_G * psit1_G

                    # Update the vxx_uni and vxx_unii vectors of the nuclei,
                    # used to determine the atomic hamiltonian, and the
                    # residuals
                    v_aL = self.ghat.dict()
                    self.ghat.integrate(vt_g, v_aL)
                    for a, v_L in v_aL.items():
                        v_ii = unpack(np.dot(setups[a].Delta_pL, v_L))
                        v_ni = kpt.vxx_ani[a]
                        v_nii = kpt.vxx_anii[a]
                        P_ni = P_ani[a]
                        v_ni[n1] += f2 * np.dot(v_ii, P_ni[n2])
                        if n1 != n2:
                            if self.excitation is None or n1 != ex_band or \
                                    n2 < nocc:
                                v_ni[n2] += f1 * np.dot(v_ii, P_ni[n1])
                            else:
                                v_ni[n2] += f1 * ex_weight * \
                                    np.dot(v_ii, P_ni[n1])
                        else:
                            # XXX Check this:
                            v_nii[n1] = f1 * v_ii
                            if self.excitation is not None and n1 == ex_band:
                                for nuoc in range(nocc, nbands):
                                    v_ni[nuoc] += f1 * \
                                        np.dot(v_ii, P_ni[nuoc])

        def calculate_vv(ni, D_ii, M_pp, weight, addme=False):
            """Calculate the local corrections depending on Mpp."""
            dexx = 0
            dekin = 0
            if not addme:
                addsign = -2.0
            else:
                addsign = 2.0
            for i1 in range(ni):
                for i2 in range(ni):
                    A = 0.0
                    for i3 in range(ni):
                        p13 = packed_index(i1, i3, ni)
                        for i4 in range(ni):
                            p24 = packed_index(i2, i4, ni)
                            A += M_pp[p13, p24] * D_ii[i3, i4]
                    p12 = packed_index(i1, i2, ni)
                    if Htpsit_nG is not None:
                        dH_p[p12] += addsign * weight / \
                            deg * A / ((i1 != i2) + 1)
                    dekin += 2 * weight / deg * D_ii[i1, i2] * A
                    dexx -= weight / deg * D_ii[i1, i2] * A
            return (dexx, dekin)

        # Apply the atomic corrections to the energy and the Hamiltonian
        # matrix
        for a, P_ni in P_ani.items():
            setup = setups[a]

            if Htpsit_nG is not None:
                # Add non-trivial corrections the Hamiltonian matrix
                h_nn = symmetrize(
                    np.inner(P_ni[:nbands], kpt.vxx_ani[a][:nbands]))
                ekin -= np.dot(kpt.f_n[:nbands], h_nn.diagonal())

                dH_p = dH_asp[a][kpt.s]

            # Get atomic density and Hamiltonian matrices
            D_p = self.density.D_asp[a][kpt.s]
            D_ii = unpack2(D_p)
            ni = len(D_ii)

            # Add atomic corrections to the valence-valence exchange energy
            # --
            # >  D   C     D
            # --  ii  iiii  ii
            (dexx, dekin) = calculate_vv(ni, D_ii, setup.M_pp, hybrid)
            ekin += dekin
            exx += dexx
            if self.rsf is not None:
                Mg_pp = setup.calculate_yukawa_interaction(self.omega)
                if is_cam:
                    (dexx, dekin) = calculate_vv(ni,
                                                 D_ii,
                                                 Mg_pp,
                                                 self.cam_beta,
                                                 addme=True)
                else:
                    (dexx, dekin) = calculate_vv(ni,
                                                 D_ii,
                                                 Mg_pp,
                                                 hybrid,
                                                 addme=True)
                ekin -= dekin
                exx -= dexx
            # Add valence-core exchange energy
            # --
            # >  X   D
            # --  ii  ii
            if setup.X_p is not None:
                exx -= hybrid * np.dot(D_p, setup.X_p)
                if Htpsit_nG is not None:
                    dH_p -= hybrid * setup.X_p
                    ekin += hybrid * np.dot(D_p, setup.X_p)

                if self.rsf == 'Yukawa' and setup.X_pg is not None:
                    if is_cam:
                        thybrid = self.cam_beta  # 0th order
                    else:
                        thybrid = hybrid
                    exx += thybrid * np.dot(D_p, setup.X_pg)
                    if Htpsit_nG is not None:
                        dH_p += thybrid * setup.X_pg
                        ekin -= thybrid * np.dot(D_p, setup.X_pg)
                elif self.rsf == 'Yukawa' and setup.X_pg is None:
                    thybrid = exp(-3.62e-2 * self.omega)  # educated guess
                    if is_cam:
                        thybrid *= self.cam_beta
                    else:
                        thybrid *= hybrid
                    exx += thybrid * np.dot(D_p, setup.X_p)
                    if Htpsit_nG is not None:
                        dH_p += thybrid * setup.X_p
                        ekin -= thybrid * np.dot(D_p, setup.X_p)
                # Add core-core exchange energy
                if kpt.s == 0:
                    if self.rsf is None or is_cam:
                        if is_cam:
                            exx += self.cam_alpha * setup.ExxC
                        else:
                            exx += hybrid * setup.ExxC

        self.exx_s[kpt.s] = self.gd.comm.sum(exx)
        self.ekin_s[kpt.s] = self.gd.comm.sum(ekin)
Пример #6
0
    def apply_orbital_dependent_hamiltonian(self, kpt, psit_nG,
                                            Htpsit_nG=None, dH_asp=None):
        if kpt.f_n is None:
            return
        
        deg = 2 // self.nspins   # Spin degeneracy
        hybrid = self.hybrid
        
        P_ani = kpt.P_ani
        setups = self.setups

        vt_g = self.finegd.empty()
        if self.gd is not self.finegd:
            vt_G = self.gd.empty()

        nocc = int(kpt.f_n.sum()) // (3 - self.nspins)
        if self.unocc:
            nbands = len(kpt.f_n)
        else:
            nbands = nocc
        self.nocc_s[kpt.s] = nocc

        if Htpsit_nG is not None:
            kpt.vt_nG = self.gd.empty(nbands)
            kpt.vxx_ani = {}
            kpt.vxx_anii = {}
            for a, P_ni in P_ani.items():
                I = P_ni.shape[1]
                kpt.vxx_ani[a] = np.zeros((nbands, I))
                kpt.vxx_anii[a] = np.zeros((nbands, I, I))

        exx = 0.0
        ekin = 0.0

        # Determine pseudo-exchange
        for n1 in range(nbands):
            psit1_G = psit_nG[n1]
            f1 = kpt.f_n[n1] / deg
            for n2 in range(n1, nbands):
                psit2_G = psit_nG[n2]
                f2 = kpt.f_n[n2] / deg

                # Double count factor:
                dc = (1 + (n1 != n2)) * deg
                
                nt_G, rhot_g = self.calculate_pair_density(n1, n2, psit_nG,
                                                           P_ani)
                vt_g[:] = 0.0
                iter = self.poissonsolver.solve(vt_g, -rhot_g,
                                                charge=-float(n1 == n2),
                                                eps=1e-12,
                                                zero_initial_phi=True)
                vt_g *= hybrid

                if self.gd is self.finegd:
                    vt_G = vt_g
                else:
                    self.restrictor.apply(vt_g, vt_G)

                # Integrate the potential on fine and coarse grids
                int_fine = self.finegd.integrate(vt_g * rhot_g)
                int_coarse = self.gd.integrate(vt_G * nt_G)
                if self.gd.comm.rank == 0:  # only add to energy on master CPU
                    exx += 0.5 * dc * f1 * f2 * int_fine
                    ekin -= dc * f1 * f2 * int_coarse
                if Htpsit_nG is not None:
                    Htpsit_nG[n1] += f2 * vt_G * psit2_G
                    if n1 == n2:
                        kpt.vt_nG[n1] = f1 * vt_G
                    else:
                        Htpsit_nG[n2] += f1 * vt_G * psit1_G

                    # Update the vxx_uni and vxx_unii vectors of the nuclei,
                    # used to determine the atomic hamiltonian, and the 
                    # residuals
                    v_aL = self.ghat.dict()
                    self.ghat.integrate(vt_g, v_aL)
                    for a, v_L in v_aL.items():
                        v_ii = unpack(np.dot(setups[a].Delta_pL, v_L))
                        v_ni = kpt.vxx_ani[a]
                        v_nii = kpt.vxx_anii[a]
                        P_ni = P_ani[a]
                        v_ni[n1] += f2 * np.dot(v_ii, P_ni[n2])
                        if n1 != n2:
                            v_ni[n2] += f1 * np.dot(v_ii, P_ni[n1])
                        else:
                            # XXX Check this:
                            v_nii[n1] = f1 * v_ii

        # Apply the atomic corrections to the energy and the Hamiltonian matrix
        for a, P_ni in P_ani.items():
            setup = setups[a]

            if Htpsit_nG is not None:
                # Add non-trivial corrections the Hamiltonian matrix
                h_nn = symmetrize(np.inner(P_ni[:nbands], 
                                           kpt.vxx_ani[a][:nbands]))
                ekin -= np.dot(kpt.f_n[:nbands], h_nn.diagonal())

                dH_p = dH_asp[a][kpt.s]
            
            # Get atomic density and Hamiltonian matrices
            D_p  = self.density.D_asp[a][kpt.s]
            D_ii = unpack2(D_p)
            ni = len(D_ii)
            
            # Add atomic corrections to the valence-valence exchange energy
            # --
            # >  D   C     D
            # --  ii  iiii  ii
            for i1 in range(ni):
                for i2 in range(ni):
                    A = 0.0
                    for i3 in range(ni):
                        p13 = packed_index(i1, i3, ni)
                        for i4 in range(ni):
                            p24 = packed_index(i2, i4, ni)
                            A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                    p12 = packed_index(i1, i2, ni)
                    if Htpsit_nG is not None:
                        dH_p[p12] -= 2 * hybrid / deg * A / ((i1 != i2) + 1)
                    ekin += 2 * hybrid / deg * D_ii[i1, i2] * A
                    exx -= hybrid / deg * D_ii[i1, i2] * A
            
            # Add valence-core exchange energy
            # --
            # >  X   D
            # --  ii  ii
            if setup.X_p is not None:
                exx -= hybrid * np.dot(D_p, setup.X_p)
                if Htpsit_nG is not None:
                    dH_p -= hybrid * setup.X_p
                    ekin += hybrid * np.dot(D_p, setup.X_p)

                # Add core-core exchange energy
                if kpt.s == 0:
                    exx += hybrid * setup.ExxC

        self.exx_s[kpt.s] = self.gd.comm.sum(exx)
        self.ekin_s[kpt.s] = self.gd.comm.sum(ekin)
Пример #7
0
    def apply_orbital_dependent_hamiltonian(self,
                                            kpt,
                                            psit_nG,
                                            Htpsit_nG=None,
                                            dH_asp=None):
        if kpt.f_n is None:
            return

        deg = 2 // self.nspins  # Spin degeneracy
        hybrid = self.hybrid

        P_ani = kpt.P_ani
        setups = self.setups

        vt_g = self.finegd.empty()
        if self.gd is not self.finegd:
            vt_G = self.gd.empty()

        nocc = int(kpt.f_n.sum()) // (3 - self.nspins)
        if self.unocc:
            nbands = len(kpt.f_n)
        else:
            nbands = nocc
        self.nocc_s[kpt.s] = nocc

        if Htpsit_nG is not None:
            kpt.vt_nG = self.gd.empty(nbands)
            kpt.vxx_ani = {}
            kpt.vxx_anii = {}
            for a, P_ni in P_ani.items():
                I = P_ni.shape[1]
                kpt.vxx_ani[a] = np.zeros((nbands, I))
                kpt.vxx_anii[a] = np.zeros((nbands, I, I))

        exx = 0.0
        ekin = 0.0

        # Determine pseudo-exchange
        for n1 in range(nbands):
            psit1_G = psit_nG[n1]
            f1 = kpt.f_n[n1] / deg
            for n2 in range(n1, nbands):
                psit2_G = psit_nG[n2]
                f2 = kpt.f_n[n2] / deg

                # Double count factor:
                dc = (1 + (n1 != n2)) * deg

                nt_G, rhot_g = self.calculate_pair_density(
                    n1, n2, psit_nG, P_ani)
                vt_g[:] = 0.0
                iter = self.poissonsolver.solve(vt_g,
                                                -rhot_g,
                                                charge=-float(n1 == n2),
                                                eps=1e-12,
                                                zero_initial_phi=True)
                vt_g *= hybrid

                if self.gd is self.finegd:
                    vt_G = vt_g
                else:
                    self.restrictor.apply(vt_g, vt_G)

                # Integrate the potential on fine and coarse grids
                int_fine = self.finegd.integrate(vt_g * rhot_g)
                int_coarse = self.gd.integrate(vt_G * nt_G)
                if self.gd.comm.rank == 0:  # only add to energy on master CPU
                    exx += 0.5 * dc * f1 * f2 * int_fine
                    ekin -= dc * f1 * f2 * int_coarse
                if Htpsit_nG is not None:
                    Htpsit_nG[n1] += f2 * vt_G * psit2_G
                    if n1 == n2:
                        kpt.vt_nG[n1] = f1 * vt_G
                    else:
                        Htpsit_nG[n2] += f1 * vt_G * psit1_G

                    # Update the vxx_uni and vxx_unii vectors of the nuclei,
                    # used to determine the atomic hamiltonian, and the
                    # residuals
                    v_aL = self.ghat.dict()
                    self.ghat.integrate(vt_g, v_aL)
                    for a, v_L in v_aL.items():
                        v_ii = unpack(np.dot(setups[a].Delta_pL, v_L))
                        v_ni = kpt.vxx_ani[a]
                        v_nii = kpt.vxx_anii[a]
                        P_ni = P_ani[a]
                        v_ni[n1] += f2 * np.dot(v_ii, P_ni[n2])
                        if n1 != n2:
                            v_ni[n2] += f1 * np.dot(v_ii, P_ni[n1])
                        else:
                            # XXX Check this:
                            v_nii[n1] = f1 * v_ii

        # Apply the atomic corrections to the energy and the Hamiltonian matrix
        for a, P_ni in P_ani.items():
            setup = setups[a]

            if Htpsit_nG is not None:
                # Add non-trivial corrections the Hamiltonian matrix
                h_nn = symmetrize(
                    np.inner(P_ni[:nbands], kpt.vxx_ani[a][:nbands]))
                ekin -= np.dot(kpt.f_n[:nbands], h_nn.diagonal())

                dH_p = dH_asp[a][kpt.s]

            # Get atomic density and Hamiltonian matrices
            D_p = self.density.D_asp[a][kpt.s]
            D_ii = unpack2(D_p)
            ni = len(D_ii)

            # Add atomic corrections to the valence-valence exchange energy
            # --
            # >  D   C     D
            # --  ii  iiii  ii
            for i1 in range(ni):
                for i2 in range(ni):
                    A = 0.0
                    for i3 in range(ni):
                        p13 = packed_index(i1, i3, ni)
                        for i4 in range(ni):
                            p24 = packed_index(i2, i4, ni)
                            A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                    p12 = packed_index(i1, i2, ni)
                    if Htpsit_nG is not None:
                        dH_p[p12] -= 2 * hybrid / deg * A / ((i1 != i2) + 1)
                    ekin += 2 * hybrid / deg * D_ii[i1, i2] * A
                    exx -= hybrid / deg * D_ii[i1, i2] * A

            # Add valence-core exchange energy
            # --
            # >  X   D
            # --  ii  ii
            if setup.X_p is not None:
                exx -= hybrid * np.dot(D_p, setup.X_p)
                if Htpsit_nG is not None:
                    dH_p -= hybrid * setup.X_p
                    ekin += hybrid * np.dot(D_p, setup.X_p)

                # Add core-core exchange energy
                if kpt.s == 0:
                    exx += hybrid * setup.ExxC

        self.exx_s[kpt.s] = self.gd.comm.sum(exx)
        self.ekin_s[kpt.s] = self.gd.comm.sum(ekin)