def radial_sto(n, zeta, l, r): """Build radial part of slater type orbital""" # Stolen from gpaw all_electron.py (intialize_wave_functions) # # STOs are defined as # # N Y_l^m r^{n-1} exp(-zeta * r) # # N = (2 zeta)^n sqrt(2 zeta / (2n)!) assert n > 0 radial = r**(n + l + 0.5) radial *= exp(-zeta * r) N = (2 * zeta)**(n + l) * sqrt(2 * zeta / fact(2 * (n + l))) radial *= N # perhaps also do Y_l^m normalization return radial
def __init__(self, gd, v, scale=1.0, n=1, dtype=float, allocate=True): h = (gd.h_cv**2).sum(1)**0.5 d = gd.xxxiucell_cv[:,v] A=np.zeros((2*n+1,2*n+1)) for i,io in enumerate(range(-n,n+1)): for j in range(2*n+1): A[i,j]=io**j/float(fact(j)) A[n,0]=1. coefs=np.linalg.inv(A)[1] coefs=np.delete(coefs,len(coefs)//2) offs=np.delete(np.arange(-n,n+1),n) coef_p = [] offset_pc = [] for i in range(3): if abs(d[i])>1e-11: coef_p.extend(list(coefs * d[i] / h[i] * scale)) offset = np.zeros((2*n, 3), int) offset[:,i]=offs offset_pc.extend(offset) FDOperator.__init__(self, coef_p, offset_pc, gd, dtype, allocate)
def __init__(self, gd, v, scale=1.0, n=1, dtype=float, allocate=True): h = (gd.h_cv**2).sum(1)**0.5 d = gd.xxxiucell_cv[:, v] A = np.zeros((2 * n + 1, 2 * n + 1)) for i, io in enumerate(range(-n, n + 1)): for j in range(2 * n + 1): A[i, j] = io**j / float(fact(j)) A[n, 0] = 1. coefs = np.linalg.inv(A)[1] coefs = np.delete(coefs, len(coefs) // 2) offs = np.delete(np.arange(-n, n + 1), n) coef_p = [] offset_pc = [] for i in range(3): if abs(d[i]) > 1e-11: coef_p.extend(list(coefs * d[i] / h[i] * scale)) offset = np.zeros((2 * n, 3), int) offset[:, i] = offs offset_pc.extend(offset) FDOperator.__init__(self, coef_p, offset_pc, gd, dtype, allocate)
def intYdYdtheta_ey(l1, m1, l2, m2): """Calculates:: pi 2pi / / * d Y(u,v) A = | | Y (u,v) cos(u)*sin(v) --- l'm' sin(u) dv du LL' / / lm du 0 0 where u = theta and v = phi in the usual notation. Note that the result is only non-zero if `|l1-l2|` is odd and `|m1-m2|` = 1 (stricter rule applies). """ if abs(l1-l2) % 2 != 1 or abs(m1-m2) != 1: return 0.0 scale = -C(l1,m1)*C(l2,m2)*np.sign(m1-m2)*np.pi/1j if abs(m1) == abs(m2)+1: if l1+1 == l2: return scale*2/(2.0*l2+1)*(l2+1)/(2.0*l2-1.0)*fact(l2+abs(m2))/fact(l2-abs(m2)-1)*(l2-abs(m2)-1) elif l1-1 == l2: return scale*2/(2.0*l2+1)*((l2+1)*fact(l2+abs(m2))/fact(l2-abs(m2))*(l2-abs(m2))-l2/(2.0*l2+3.0)*fact(l2+abs(m2)+1)/fact(l2-abs(m2))*(l2-abs(m2)+1)) elif l1-l2 > 2: # and (l1-l2)%2 == 1 which is always true return -scale*2*abs(m2)*fact(l2+abs(m2))/fact(l2-abs(m2)) else: return 0.0 else: assert abs(m1) == abs(m2)-1 if l1 == l2+1: return -scale*2/(2.0*l1+1.0)*(l1-1)/(2.0*l1-1.0)*fact(l1+abs(m1))/fact(l1-abs(m1)-1)*(l1-abs(m1)-1) elif l1 == l2-1: return -scale*2/(2.0*l1+1.0)*((l1+1)/(2.0*l1+3.0)*fact(l1+abs(m1)+1)/fact(l1-abs(m1))*(l1-abs(m1)+1)-(abs(m1)+1)*fact(l1+abs(m1))/fact(l1-abs(m1))*(l1-abs(m1))) elif l2-l1 > 2: # and (l2-l1)%2 == 1 which is always true return scale*2*(abs(m1)+1)*fact(l1+abs(m1))/fact(l1-abs(m1)) else: return 0.0
def intYdYdtheta_ey(l1, m1, l2, m2): """Calculates:: pi 2pi / / * d Y(u,v) A = | | Y (u,v) cos(u)*sin(v) --- l'm' sin(u) dv du LL' / / lm du 0 0 where u = theta and v = phi in the usual notation. Note that the result is only non-zero if `|l1-l2|` is odd and `|m1-m2|` = 1 (stricter rule applies). """ if abs(l1 - l2) % 2 != 1 or abs(m1 - m2) != 1: return 0.0 scale = -C(l1, m1) * C(l2, m2) * np.sign(m1 - m2) * np.pi / 1j if abs(m1) == abs(m2) + 1: if l1 + 1 == l2: return scale * 2 / (2.0 * l2 + 1) * (l2 + 1) / ( 2.0 * l2 - 1.0) * fact(l2 + abs(m2)) / fact(l2 - abs(m2) - 1) * (l2 - abs(m2) - 1) elif l1 - 1 == l2: return scale * 2 / (2.0 * l2 + 1) * ( (l2 + 1) * fact(l2 + abs(m2)) / fact(l2 - abs(m2)) * (l2 - abs(m2)) - l2 / (2.0 * l2 + 3.0) * fact(l2 + abs(m2) + 1) / fact(l2 - abs(m2)) * (l2 - abs(m2) + 1)) elif l1 - l2 > 2: # and (l1-l2)%2 == 1 which is always true return -scale * 2 * abs(m2) * fact(l2 + abs(m2)) / fact(l2 - abs(m2)) else: return 0.0 else: assert abs(m1) == abs(m2) - 1 if l1 == l2 + 1: return -scale * 2 / (2.0 * l1 + 1.0) * (l1 - 1) / ( 2.0 * l1 - 1.0) * fact(l1 + abs(m1)) / fact(l1 - abs(m1) - 1) * (l1 - abs(m1) - 1) elif l1 == l2 - 1: return -scale * 2 / (2.0 * l1 + 1.0) * ( (l1 + 1) / (2.0 * l1 + 3.0) * fact(l1 + abs(m1) + 1) / fact(l1 - abs(m1)) * (l1 - abs(m1) + 1) - (abs(m1) + 1) * fact(l1 + abs(m1)) / fact(l1 - abs(m1)) * (l1 - abs(m1))) elif l2 - l1 > 2: # and (l2-l1)%2 == 1 which is always true return scale * 2 * (abs(m1) + 1) * fact(l1 + abs(m1)) / fact(l1 - abs(m1)) else: return 0.0