def __init__(self, input_dim, output_dim, active_dims=None): Kernel.__init__(self, active_dims) self.input_dim = input_dim self.output_dim = output_dim noise = np.random.random((output_dim)) self.noise = gpflow.Parameter(noise, transform=gpflow.utilities.positive(), name="noise")
def __init__(self, base_kern, branchPtTensor, b, fDebug=False): ''' branchPtTensor is tensor of branch points of size F X F X B where F the number of functions and B the number of branching points ''' Kernel.__init__(self, input_dim=base_kern.input_dim + 1) self.kern = base_kern self.fm = branchPtTensor self.fDebug = fDebug assert isinstance(b, np.ndarray) assert self.fm.shape[0] == self.fm.shape[1] assert self.fm.shape[2] > 0 self.Bv = DataHolder(b)
def __init__(self, input_dim, variance=1.0, frequency=np.array([1.0, 1.0]), lengthscale=1.0, correlation=0.0, max_freq=1.0, active_dims=None): assert (input_dim == 1 ) # the derivations are valid only for one dimensional input Kernel.__init__(self, input_dim=input_dim, active_dims=active_dims) self.variance = Param(variance, transforms.positive) self.frequency = Param(frequency, transforms.Logistic(0.0, max_freq)) self.lengthscale = Param(lengthscale, transforms.positive) correlation = np.clip(correlation, 1e-4, 1 - 1e-4) # clip for numerical reasons self.correlation = Param(correlation, transforms.Logistic())
def __init__(self, base_kern, len_seqs, len_windows, num_features, normalized=True): Kernel.__init__(self, len_seqs * num_features) self.len_seqs = len_seqs self.len_windows = len_windows self.base_kern = base_kern self.num_features = num_features self.normalized = normalized self.variance = Parameter(1.0, transform=transforms.positive, dtype=settings.float_type) if self.base_kern.input_dim != len_windows * num_features: raise ValueError( "Base_kern input dimensions must be consistent with window length." )
def __init__(self, base_kern): Kernel.__init__(self, input_dim=base_kern.input_dim + 1) self.kern = base_kern
def __init__(self, input_dim, output_dim, active_dims=None, name=None): Kernel.__init__(self, active_dims, name) self.input_dim = input_dim self.output_dim = output_dim