Пример #1
0
def compare_KLs(sess, feed_dict, mu, Q_chol, P_chols):
    mu_gpflow = tf.transpose(mu) if mu.shape.ndims == 2 else mu[:, None]
    Q_chol_gpflow = Q_chol if Q_chol.shape.ndims == 3 else Q_chol[None, ...]

    KL_gpflow = sess.run(gauss_kl(q_mu=mu_gpflow, q_sqrt=Q_chol_gpflow,
                                  K=None),
                         feed_dict=feed_dict)
    KL_gpt = sess.run(KL(mu_diff=mu, Q_chol=Q_chol, P_chol=None, P=None),
                      feed_dict=feed_dict)
    assert_allclose(KL_gpflow, KL_gpt)

    for P_chol in P_chols:
        P_ndims = P_chol.shape.ndims
        P = tf.square(P_chol) if P_ndims == 1 else tf.matmul(
            P_chol, P_chol, transpose_b=True)

        KL_gpflow = sess.run(gauss_kl(q_mu=mu_gpflow,
                                      q_sqrt=Q_chol_gpflow,
                                      K=tf.diag(P) if P_ndims == 1 else P),
                             feed_dict=feed_dict)

        KL_gpt = sess.run(KL(mu_diff=mu, Q_chol=Q_chol, P_chol=P_chol, P=None),
                          feed_dict=feed_dict)
        assert_allclose(KL_gpflow, KL_gpt)
        KL_gpt = sess.run(KL(mu_diff=mu, Q_chol=Q_chol, P_chol=None, P=P),
                          feed_dict=feed_dict)
        assert_allclose(KL_gpflow, KL_gpt)
        KL_gpt = sess.run(KL(mu_diff=mu, Q_chol=Q_chol, P_chol=P_chol, P=P),
                          feed_dict=feed_dict)
        assert_allclose(KL_gpflow, KL_gpt)
def test_kl_k_cholesky(diag):
    """
    Test that passing K or K_cholesky yield the same answer
    """
    q_mu = Datum.mu
    q_sqrt = Datum.sqrt_diag if diag else Datum.sqrt
    kl_K = gauss_kl(q_mu, q_sqrt, K=Datum.K)
    kl_K_chol = gauss_kl(q_mu, q_sqrt, K_cholesky=Datum.K_cholesky)

    np.testing.assert_allclose(kl_K.numpy(), kl_K_chol.numpy())
Пример #3
0
 def KL(self):
     """The KL divergence from variational distribution to the prior."""
     if self.white:
         return kullback_leiblers.gauss_kl(self.q_mu,
                                           self.q_sqrt[None, :, :], None)
     else:
         K = self.kernel(self.inducing_points)
         K += default_jitter() * tf.eye(self.num_inducing, dtype=K.dtype)
         return kullback_leiblers.gauss_kl(self.q_mu,
                                           self.q_sqrt[None, :, :], K)
Пример #4
0
def test_kl_k_cholesky(session_tf, mu, sqrt, sqrt_diag, K, K_cholesky, diag):
    """
    Test that passing K or K_cholesky yield the same answer
    """
    kl_K = gauss_kl(mu, sqrt_diag if diag else sqrt, K=K)
    kl_K_chol = gauss_kl(mu,
                         sqrt_diag if diag else sqrt,
                         K_cholesky=K_cholesky)

    np.testing.assert_allclose(kl_K.eval(), kl_K_chol.eval())
Пример #5
0
def test_whitened(session_tf, diag, mu, sqrt_diag, I):
    """
    Check that K=Identity and K=None give same answer
    """
    chol_from_diag = tf.stack([tf.diag(sqrt_diag[:, i]) for i in range(Datum.N)]) # N x M x M
    s = sqrt_diag if diag else chol_from_diag

    kl_white = gauss_kl(mu, s)
    kl_nonwhite = gauss_kl(mu, s, I)

    np.testing.assert_allclose(kl_white.eval(), kl_nonwhite.eval())
Пример #6
0
    def KL(self):
        """
        The KL divergence from the variational distribution to the prior.
        q ~ N(\mu, S)

        :return: KL divergence from q(u) = N(q_mu, q_s) to p(u) ~ N(0, Kuu), independently for each GP
        """
        if self.white:
            return gauss_kl(self.q_mu, self.q_sqrt, K=None)
        else:
            return gauss_kl(self.q_mu, self.q_sqrt, self.MM_Ku_prior)
Пример #7
0
def test_whitened(session_tf, diag, mu, sqrt_diag, I):
    """
    Check that K=Identity and K=None give same answer
    """
    chol_from_diag = tf.stack(
        [tf.diag(sqrt_diag[:, i]) for i in range(Datum.N)])  # N x M x M
    s = sqrt_diag if diag else chol_from_diag

    kl_white = gauss_kl(mu, s)
    kl_nonwhite = gauss_kl(mu, s, I)

    np.testing.assert_allclose(kl_white.eval(), kl_nonwhite.eval())
Пример #8
0
def test_diags(session_tf, white, mu, sqrt_diag, K):
    """
    The covariance of q(x) can be Cholesky matrices or diagonal matrices.
    Here we make sure the behaviours overlap.
    """
    # the chols are diagonal matrices, with the same entries as the diag representation.
    chol_from_diag = tf.stack([tf.diag(sqrt_diag[:, i]) for i in range(Datum.N)]) # N x M x M
    # run
    kl_diag = gauss_kl(mu, sqrt_diag, K if white else None)
    kl_dense = gauss_kl(mu, chol_from_diag, K if white else None)

    np.testing.assert_allclose(kl_diag.eval(), kl_dense.eval())
def test_unknown_size_inputs():
    """
    Test for #725 and #734. When the shape of the Gaussian's mean had at least
    one unknown parameter, `gauss_kl` would blow up. This happened because
    `tf.size` can only output types `tf.int32` or `tf.int64`.
    """
    mu = np.ones([1, 4], dtype=default_float())
    sqrt = np.ones([4, 1, 1], dtype=default_float())

    known_shape = gauss_kl(*map(tf.constant, [mu, sqrt]))
    unknown_shape = gauss_kl(mu, sqrt)

    np.testing.assert_allclose(known_shape, unknown_shape)
def test_whitened(diag):
    """
    Check that K=Identity and K=None give same answer
    """
    chol_from_diag = tf.stack(
        [tf.linalg.diag(Datum.sqrt_diag[:, i]) for i in range(Datum.N)]  # [N, M, M]
    )
    s = Datum.sqrt_diag if diag else chol_from_diag

    kl_white = gauss_kl(Datum.mu, s)
    kl_nonwhite = gauss_kl(Datum.mu, s, Datum.I)

    np.testing.assert_allclose(kl_white, kl_nonwhite)
Пример #11
0
def test_diags(session_tf, white, mu, sqrt_diag, K):
    """
    The covariance of q(x) can be Cholesky matrices or diagonal matrices.
    Here we make sure the behaviours overlap.
    """
    # the chols are diagonal matrices, with the same entries as the diag representation.
    chol_from_diag = tf.stack(
        [tf.diag(sqrt_diag[:, i]) for i in range(Datum.N)])  # N x M x M
    # run
    kl_diag = gauss_kl(mu, sqrt_diag, K if white else None)
    kl_dense = gauss_kl(mu, chol_from_diag, K if white else None)

    np.testing.assert_allclose(kl_diag.eval(), kl_dense.eval())
def test_diags(white):
    """
    The covariance of q(x) can be Cholesky matrices or diagonal matrices.
    Here we make sure the behaviours overlap.
    """
    # the chols are diagonal matrices, with the same entries as the diag representation.
    chol_from_diag = tf.stack(
        [tf.linalg.diag(Datum.sqrt_diag[:, i]) for i in range(Datum.N)]  # [N, M, M]
    )
    kl_diag = gauss_kl(Datum.mu, Datum.sqrt_diag, Datum.K if white else None)
    kl_dense = gauss_kl(Datum.mu, chol_from_diag, Datum.K if white else None)

    np.testing.assert_allclose(kl_diag, kl_dense)
    def KL(self):
        """
        The KL divergence from the variational distribution to the prior

        :return: KL divergence from N(q_mu, q_sqrt) to N(0, I), independently for each GP
        """
        return gauss_kl(self.q_mu, self.q_sqrt)
Пример #14
0
def test_sumkl_equals_batchkl_shared_k_not_diag_mocked_tf21():
    """
    Version of test_sumkl_equals_batchkl with shared_k=True and diag=False
    that tests the TensorFlow < 2.2 workaround with tiling still works.
    """
    kl_batch = gauss_kl(Datum.mu, Datum.sqrt, Datum.K)
    kl_sum = []
    for n in range(Datum.N):
        q_mu_n = Datum.mu[:, n][:, None]  # [M, 1]
        q_sqrt_n = Datum.sqrt[n, :, :][None, :, :]  # [1, M, M] or [M, 1]
        K_n = Datum.K  # [1, M, M] or [M, M]
        kl_n = gauss_kl(q_mu_n, q_sqrt_n, K=K_n)
        kl_sum.append(kl_n)

    kl_sum = tf.reduce_sum(kl_sum)
    assert_almost_equal(kl_sum, kl_batch)
Пример #15
0
    def build_prior_KL(self):
        if self.whiten:
            K = None
        else:
            K = Kuu(self.feature, self.kern, jitter=settings.numerics.jitter_level)  # (P x) x M x M

        return kullback_leiblers.gauss_kl(self.q_mu, self.q_sqrt, K)
Пример #16
0
    def myKL2(self):
        X = np.array([[1., 2., 3.], [1., 2.1, 3.], [1.1, 2., 3.],
                      [1., 2., 3.1]])
        Y = np.array([[1.], [2.], [.2], [3.]])
        Z = np.array([[1., 2., 3.], [1.3, 2.2, 3.1]])
        A = np.tril(np.random.rand(6, 6))  #"cholesky" of S_M
        B = np.random.rand(6, 1)  #mu_M
        all_kernels = [
            kernels.RBF(3),
            kernels.RBF(2, lengthscales=3., variance=2.)
        ]
        all_Zs, all_mfs = init_linear(X, Z, all_kernels)
        mylayers = Fully_Coupled_Layers(X,
                                        Y,
                                        Z,
                                        all_kernels,
                                        all_mfs,
                                        all_Zs,
                                        mu_M=B,
                                        S_M=A)
        kl = mylayers.KL()
        session = get_default_session()
        kl = session.run(kl)

        Kmm1 = all_kernels[0].compute_K_symm(
            all_Zs[0]) + np.eye(Z.shape[0]) * settings.jitter
        Kmm2 = all_kernels[1].compute_K_symm(
            all_Zs[1]) + np.eye(all_Zs[1].shape[0]) * settings.jitter
        K_big = scipy.linalg.block_diag(Kmm1, Kmm1, Kmm2)
        tfKL = gauss_kl(tf.constant(B),
                        tf.constant(A[np.newaxis]),
                        K=tf.constant(K_big))

        sess = tf.Session()
        return kl, sess.run(tfKL)
Пример #17
0
 def prior_kl(self) -> tf.Tensor:
     """
     The KL divergence from the variational distribution to the prior
     :return: KL divergence from N(w_mu, w_sqrt) to N(0, I)
     """
     return gauss_kl(
         self.w_mu[:, None],
         self.w_sqrt[None] if not self.is_mean_field else self.w_sqrt[:, None],
     )
Пример #18
0
 def prior_kl(self) -> tf.Tensor:
     """
     Returns the KL divergence ``KL[q(u)∥p(u)]`` from the prior ``p(u) = N(0, I)`` to
     the variational distribution ``q(u) = N(w_mu, w_sqrt²)``.
     """
     return gauss_kl(
         self.w_mu[:, None],
         self.w_sqrt[None] if not self.is_mean_field else self.w_sqrt[:,
                                                                      None],
     )
Пример #19
0
def test_unknown_size_inputs(session_tf):
    """
    Test for #725 and #734. When the shape of the Gaussian's mean had at least
    one unknown parameter, `gauss_kl` would blow up. This happened because
    `tf.size` can only output types `tf.int32` or `tf.int64`.
    """
    mu_ph = tf.placeholder(settings.float_type, [None, None])
    sqrt_ph = tf.placeholder(settings.float_type, [None, None, None])
    mu = np.ones([1, 4], dtype=settings.float_type)
    sqrt = np.ones([4, 1, 1], dtype=settings.float_type)

    feed_dict = {mu_ph: mu, sqrt_ph: sqrt}
    known_shape_tf = gauss_kl(*map(tf.constant, [mu, sqrt]))
    unknown_shape_tf = gauss_kl(mu_ph, sqrt_ph)

    known_shape = session_tf.run(known_shape_tf)
    unknown_shape = session_tf.run(unknown_shape_tf, feed_dict=feed_dict)

    np.testing.assert_allclose(known_shape, unknown_shape)
Пример #20
0
def test_unknown_size_inputs(session_tf):
    """
    Test for #725 and #734. When the shape of the Gaussian's mean had at least
    one unknown parameter, `gauss_kl` would blow up. This happened because
    `tf.size` can only output types `tf.int32` or `tf.int64`.
    """
    mu_ph = tf.placeholder(settings.float_type, [None, None])
    sqrt_ph = tf.placeholder(settings.float_type, [None, None, None])
    mu = np.ones([1, 4], dtype=settings.float_type)
    sqrt = np.ones([4, 1, 1], dtype=settings.float_type)
    
    feed_dict = {mu_ph: mu, sqrt_ph: sqrt}
    known_shape_tf = gauss_kl(*map(tf.constant, [mu, sqrt]))
    unknown_shape_tf = gauss_kl(mu_ph, sqrt_ph)
    
    known_shape = session_tf.run(known_shape_tf)
    unknown_shape = session_tf.run(unknown_shape_tf, feed_dict=feed_dict)
    
    np.testing.assert_allclose(known_shape, unknown_shape)
Пример #21
0
    def _build_likelihood(self):

        X = self.X
        Y = self.Y

        num_samples = tf.shape(X)[0]

        if self.whiten:
            f_mean, f_var = self._build_predict(X, full_cov=False, full_output_cov=False)
            KL =  gauss_kl(self.q_mu, tf.matrix_band_part(self.q_sqrt, -1, 0))
        else:
            f_mean, f_var, Kzz = self._build_predict(X, full_cov=False, full_output_cov=False, return_Kzz=True)
            KL =  gauss_kl(self.q_mu, tf.matrix_band_part(self.q_sqrt, -1, 0), K=Kzz)
        
        # compute variational expectations
        var_exp = self.likelihood.variational_expectations(f_mean, f_var, Y)

        # scaling for batch size
        scale = tf.cast(self.num_data, settings.float_type) / tf.cast(num_samples, settings.float_type)
        return tf.reduce_sum(var_exp) * scale - KL
Пример #22
0
 def build_prior_KL(self, K):
     if K:
         KL = 0.
         for i, k in enumerate(K):
             KL += gauss_kl_white(self.q_mu[:,(i*self.offset):((i+1)*self.offset)],
                                  self.q_sqrt[(i*self.offset):((i+1)*self.offset),:,:],
                                  K=k
                                 )
         return KL
     else:
         return gauss_kl(self.q_mu, self.q_sqrt, K=K)
Пример #23
0
def test_sumkl_equals_batchkl(session_tf, shared_k, diag, mu,
                              sqrt, sqrt_diag, K_batch, K):
    """
    gauss_kl implicitely performs a sum of KL divergences
    This test checks that doing the sum outside of the function is equivalent
    For q(X)=prod q(x_l) and p(X)=prod p(x_l), check that sum KL(q(x_l)||p(x_l)) = KL(q(X)||p(X))
    Here, q(X) has covariance L x M x M
    p(X) has covariance L x M x M ( or M x M )
    Here, q(x_i) has covariance 1 x M x M
    p(x_i) has covariance M x M
    """
    s = sqrt_diag if diag else sqrt
    kl_batch = gauss_kl(mu,s,K if shared_k else K_batch)
    kl_sum = []
    for n in range(Datum.N):
        kl_sum.append(gauss_kl(mu[:, n][:,None], # M x 1
            sqrt_diag[:, n][:, None] if diag else sqrt[n, :, :][None, :, :], # 1 x M x M or M x 1
            K if shared_k else K_batch[n, :, :][None,:,:])) # 1 x M x M or M x M
    kl_sum =tf.reduce_sum(kl_sum)
    assert_almost_equal(kl_sum.eval(), kl_batch.eval())
Пример #24
0
def test_oned(session_tf, white, mu, sqrt, K_batch):
    """
    Check that the KL divergence matches a 1D by-hand calculation.
    """
    m = 0
    mu1d = mu[m,:][None,:] # 1 x N
    s1d = sqrt[:,m,m][:,None,None] # N x 1 x 1
    K1d = K_batch[:,m,m][:,None,None] # N x 1 x 1

    kl = gauss_kl(mu1d,s1d,K1d if not white else None)
    kl_tf = tf_kl_1d(tf.reshape(mu1d,(-1,)), # N
                   tf.reshape(s1d,(-1,)), # N
                   None if white else tf.reshape(K1d,(-1,))) # N
    np.testing.assert_allclose(kl.eval(), kl_tf.eval())
Пример #25
0
 def logp(self, X, Y):
     """
     :param X: latent state (n_samples x T x E)
     :param Y: observations (n_samples x T x D)
     :return: variational lower bound on \log P(Y|X) (n_samples x T)
     """
     KL = kullback_leiblers.gauss_kl(self.Umu, self.Ucov_chol, None)  # ()
     fmean, fvar = self.conditional(
         X, add_observation_noise=False
     )  # (n_samples x T x D) and (n_samples x T x D)
     var_exp = tf.reduce_sum(
         self.likelihood.variational_expectations(fmean, fvar, Y),
         -1)  # (n_samples x T)
     return var_exp - KL / tf.cast(tf.shape(X)[1], gp.settings.float_type)
Пример #26
0
    def build_prior_KL(self):
        # whitening of priors can be implemented here
        """
        This gives KL divergence between inducing points priors and approximated posteriors

        KL(q(u_g)||p(u_g)) + KL(q(u_f)||p(u_f))

        q(u_f) = N(u_f|u_fm,u_fs)
        p(u_f) = N(u_f|0,Kfmm)

        q(u_g) = N(u_g|u_gm,u_gs)
        p(u_g) = N(u_g|0,Kgmm)

        """

        if self.whiten:
            if self.q_diag:
                KL = kullback_leiblers.gauss_kl_white_diag(self.u_fm, self.u_fs_sqrt) + \
                     kullback_leiblers.gauss_kl_white_diag(self.u_gm, self.u_gs_sqrt)
            else:
                KL = kullback_leiblers.gauss_kl_white(self.u_fm, self.u_fs_sqrt) + \
                     kullback_leiblers.gauss_kl_white(self.u_gm, self.u_gs_sqrt)
        else:
            Kfmm = self.kernf.K(self.Zf) + tf.eye(
                self.num_inducing_f,
                dtype=float_type) * settings.numerics.jitter_level
            Kgmm = self.kerng.K(self.Zg) + tf.eye(
                self.num_inducing_g,
                dtype=float_type) * settings.numerics.jitter_level

            if self.q_diag:
                KL = kullback_leiblers.gauss_kl_diag(self.u_fm, self.u_fs_sqrt, Kfmm) + \
                     kullback_leiblers.gauss_kl_diag(self.u_gm, self.u_gs_sqrt, Kgmm)
            else:
                KL = kullback_leiblers.gauss_kl(self.u_fm, self.u_fs_sqrt, Kfmm) + \
                     kullback_leiblers.gauss_kl(self.u_gm, self.u_gs_sqrt, Kgmm)
        return KL
Пример #27
0
 def build_prior_KL(self):
     if self.whiten:
         if self.q_diag:
             KL = kullback_leiblers.gauss_kl_white_diag(
                 self.q_mu, self.q_sqrt)
         else:
             KL = kullback_leiblers.gauss_kl_white(self.q_mu, self.q_sqrt)
     else:
         K = self.kern.K(self.Z) + tf.eye(self.num_inducing,
                                          dtype=float_type) * settings.numerics.jitter_level
         if self.q_diag:
             KL = kullback_leiblers.gauss_kl_diag(self.q_mu, self.q_sqrt, K)
         else:
             KL = kullback_leiblers.gauss_kl(self.q_mu, self.q_sqrt, K)
     return KL
Пример #28
0
def test_oned(session_tf, white, mu, sqrt, K_batch):
    """
    Check that the KL divergence matches a 1D by-hand calculation.
    """
    m = 0
    mu1d = mu[m, :][None, :]  # 1 x N
    s1d = sqrt[:, m, m][:, None, None]  # N x 1 x 1
    K1d = K_batch[:, m, m][:, None, None]  # N x 1 x 1

    kl = gauss_kl(mu1d, s1d, K1d if not white else None)
    kl_tf = tf_kl_1d(
        tf.reshape(mu1d, (-1, )),  # N
        tf.reshape(s1d, (-1, )),  # N
        None if white else tf.reshape(K1d, (-1, )))  # N
    np.testing.assert_allclose(kl.eval(), kl_tf.eval())
Пример #29
0
def test_sumkl_equals_batchkl(session_tf, shared_k, diag, mu, sqrt, sqrt_diag,
                              K_batch, K):
    """
    gauss_kl implicitely performs a sum of KL divergences
    This test checks that doing the sum outside of the function is equivalent
    For q(X)=prod q(x_l) and p(X)=prod p(x_l), check that sum KL(q(x_l)||p(x_l)) = KL(q(X)||p(X))
    Here, q(X) has covariance L x M x M
    p(X) has covariance L x M x M ( or M x M )
    Here, q(x_i) has covariance 1 x M x M
    p(x_i) has covariance M x M
    """
    s = sqrt_diag if diag else sqrt
    kl_batch = gauss_kl(mu, s, K if shared_k else K_batch)
    kl_sum = []
    for n in range(Datum.N):
        kl_sum.append(
            gauss_kl(
                mu[:, n][:, None],  # M x 1
                sqrt_diag[:, n][:, None]
                if diag else sqrt[n, :, :][None, :, :],  # 1 x M x M or M x 1
                K if shared_k else
                K_batch[n, :, :][None, :, :]))  # 1 x M x M or M x M
    kl_sum = tf.reduce_sum(kl_sum)
    assert_almost_equal(kl_sum.eval(), kl_batch.eval())
def test_sumkl_equals_batchkl(shared_k, diag):
    """
    gauss_kl implicitely performs a sum of KL divergences
    This test checks that doing the sum outside of the function is equivalent
    For q(X)=prod q(x_l) and p(X)=prod p(x_l), check that sum KL(q(x_l)||p(x_l)) = KL(q(X)||p(X))
    Here, q(X) has covariance [L, M, M]
    p(X) has covariance [L, M, M] ( or [M, M] )
    Here, q(x_i) has covariance [1, M, M]
    p(x_i) has covariance [M, M]
    """
    s = Datum.sqrt_diag if diag else Datum.sqrt
    kl_batch = gauss_kl(Datum.mu, s, Datum.K if shared_k else Datum.K_batch)
    kl_sum = []
    for n in range(Datum.N):
        q_mu_n = Datum.mu[:, n][:, None]  # [M, 1]
        q_sqrt_n = (
            Datum.sqrt_diag[:, n][:, None] if diag else Datum.sqrt[n, :, :][None, :, :]
        )  # [1, M, M] or [M, 1]
        K_n = Datum.K if shared_k else Datum.K_batch[n, :, :][None, :, :]  # [1, M, M] or [M, M]
        kl_n = gauss_kl(q_mu_n, q_sqrt_n, K=K_n)
        kl_sum.append(kl_n)

    kl_sum = tf.reduce_sum(kl_sum)
    assert_almost_equal(kl_sum, kl_batch)
def test_oned(white, dim):
    """
    Check that the KL divergence matches a 1D by-hand calculation.
    """
    mu1d = Datum.mu[dim, :][None, :]  # [1, N]
    s1d = Datum.sqrt[:, dim, dim][:, None, None]  # [N, 1, 1]
    K1d = Datum.K_batch[:, dim, dim][:, None, None]  # [N, 1, 1]

    kl = gauss_kl(mu1d, s1d, K1d if not white else None)
    kl_1d = compute_kl_1d(
        tf.reshape(mu1d, (-1,)),  # N
        tf.reshape(s1d, (-1,)),  # N
        None if white else tf.reshape(K1d, (-1,)),
    )  # N
    np.testing.assert_allclose(kl, kl_1d)
Пример #32
0
def test_local_kl_gpflow_consistency(w_dim):
    num_data = 400
    means = np.random.randn(num_data, w_dim)
    encoder = DirectlyParameterizedNormalDiag(num_data, w_dim, means)

    lv = LatentVariableLayer(encoder=encoder,
                             prior=_zero_one_normal_prior(w_dim))
    posteriors = lv._inference_posteriors(
        [np.random.randn(num_data, 3),
         np.random.randn(num_data, 2)])

    q_mu = posteriors.parameters["loc"]
    q_sqrt = posteriors.parameters["scale_diag"]

    gpflow_local_kls = gauss_kl(q_mu, q_sqrt)
    tfp_local_kls = tf.reduce_sum(lv._local_kls(posteriors))

    np.testing.assert_allclose(tfp_local_kls, gpflow_local_kls, rtol=1e-10)
Пример #33
0
 def build_prior_KL(self, K):
     return gauss_kl(self.q_mu, self.q_sqrt, K=K)
Пример #34
0
 def prior_kl(self, Kuu):
     """
     KL divergence between p(u) = N(0, Kuu) and q(u) = N(μ, S)
     """
     return kullback_leiblers.gauss_kl(self.q_mu[:, None],
                                       self.q_sqrt[None, :, :], Kuu)
Пример #35
0
 def KL(self):
     Ku = None if self.white else self.Ku
     return gauss_kl(self.Um, self.Us_sqrt, Ku)