Пример #1
0
    def __init__(self,
                 x_kernel_pars=None,
                 g_kernel_pars=None,
                 gammas=None,
                 sigmas=None,
                 As=None,
                 data_time=None,
                 data_Y=None,
                 x_kernel_type="sqexp"):

        if isinstance(sigmas, np.ndarray):
            _sigmas = []
            for i, sval in enumerate(sigmas):
                sigpar = Parameter("sigma_{}".format(i))
                sigpar.value = sval
                _sigmas.append(sigpar)

            self._sigmas = ParameterCollection(_sigmas)

        if isinstance(gammas, np.ndarray):
            _gammas = []
            for i, gval in enumerate(gammas):
                gpar = Parameter("gamma_{}".format(i))
                gpar.value = gval
                _gammas.append(gpar)

            self._gammas = ParameterCollection(_gammas)

        if all(isinstance(kp, np.ndarray) for kp in x_kernel_pars):
            if x_kernel_type == "sqexp":
                _x_kernels = []
                for kp in x_kernel_pars:
                    _x_kernels.append(
                        GradientMultioutputKernel.SquareExponKernel(kp))

                self._x_kernels = _x_kernels

        if all(isinstance(kp, np.ndarray) for kp in g_kernel_pars):
            _g_kernels = []
            for kp in g_kernel_pars:
                _g_kernels.append(Kernel.SquareExponKernel(kp))
            self._g_kernels = _g_kernels

        self._As = np.array(As)
        self.R = len(As) - 1

        if data_Y is not None:
            self.data = Data(data_time, data_Y)
            self.K = data_Y.shape[1]
            self.N = data_time.size

        try:
            self._store_gpg_covs()
        except:
            pass
Пример #2
0
def mlfm_setup(mod):
    from gpode.bayes import Parameter, ParameterCollection
    from lindod_src import _x_gp_pars
    K = 2
    xkp = []
    for k in range(K):
        p1 = Parameter("phi_{}_1".format(k),
                       prior=("gamma", (4, 0.2)),
                       proposal=("normal rw", 0.1))
        p2 = Parameter("phi_{}_2".format(k),
                       prior=("gamma", (4, 0.2)),
                       proposal=("normal rw", 0.1))
        phi_k = ParameterCollection([p1, p2], independent=True)
        xkp.append(phi_k)

    m = MGPLinearAdapGrad3(xkp)
    m.model_setup()
    m.data = mod.data
    m._X = mod.latent_X
    m._dXdt = mod._dXdt
    m._As = mod.As
    m._Gs = mod.Gs
    m._gammas = mod.gammas
    m._sigmas = mod.sigmas
    m._Lxxs = []
    m._mdxs = []
    m._dCds = []
    for i, kern in enumerate(m._x_kernels):
        Lxx, mdx_x, Cdxdx_x = _x_gp_pars(kern.kpar.value(), kern, m.data.time,
                                         m._X[:, i])
        m._Lxxs.append(Lxx)
        m._mdxs.append(mdx_x)
        m._dCds.append(Cdxdx_x)
    return m
Пример #3
0
import numpy as np
from gpode.bayes import Parameter, ParameterCollection
from gpode.kernels import Kernel

p1 = Parameter("p1", prior=("gamma", (4, 0.2)), proposal=("normal rw", 0.1))

p2 = Parameter("p2", prior=("gamma", (4, 0.2)), proposal=("normal rw", 0.1))

phi_k = ParameterCollection([p1, p2], independent=True)
for pname, par in phi_k.parameters.items():
    par.value = par.prior.rvs()

kse = Kernel.SquareExponKernel(kpar=phi_k)
print(phi_k.value())
print(np.array(phi_k.proposal.rvs(phi_k.value())))
Пример #4
0
MLFM = lfm.MulLatentForceModel_adapgrad

tt = np.linspace(.0, 5., 12)
mathieudat = DataLoader.load("mathieu", 57, tt, [0.1, 0.1], a=1., h=.9)
np.random.seed(3)

K = 2
xkp = []
for k in range(K):
    p1 = Parameter("phi_{}_1".format(k),
                   prior=("gamma", (4, 0.2)),
                   proposal=("normal rw", 0.1))
    p2 = Parameter("phi_{}_2".format(k),
                   prior=("gamma", (4, 0.2)),
                   proposal=("normal rw", 0.1))
    phi_k = ParameterCollection([p1, p2], independent=True)
    xkp.append(phi_k)

gkp = []
for r in range(1):
    p1 = Parameter("psi_{}_1".format(r + 1),
                   prior=("gamma", (4, 4.)),
                   proposal=("normal rw", 0.1))
    p2 = Parameter("psi_{}_2".format(r + 1),
                   prior=("gamma", (4, 4.)),
                   proposal=("normal rw", 0.1))
    psi_r = ParameterCollection([p1, p2], independent=True)
    gkp.append(psi_r)

# Make the obs. noise parameters
sigmas = [
Пример #5
0
class VariationalMLFM:
    def __init__(self,
                 x_kernel_pars=None,
                 g_kernel_pars=None,
                 gammas=None,
                 sigmas=None,
                 As=None,
                 data_time=None,
                 data_Y=None,
                 x_kernel_type="sqexp"):

        if isinstance(sigmas, np.ndarray):
            _sigmas = []
            for i, sval in enumerate(sigmas):
                sigpar = Parameter("sigma_{}".format(i))
                sigpar.value = sval
                _sigmas.append(sigpar)

            self._sigmas = ParameterCollection(_sigmas)

        if isinstance(gammas, np.ndarray):
            _gammas = []
            for i, gval in enumerate(gammas):
                gpar = Parameter("gamma_{}".format(i))
                gpar.value = gval
                _gammas.append(gpar)

            self._gammas = ParameterCollection(_gammas)

        if all(isinstance(kp, np.ndarray) for kp in x_kernel_pars):
            if x_kernel_type == "sqexp":
                _x_kernels = []
                for kp in x_kernel_pars:
                    _x_kernels.append(
                        GradientMultioutputKernel.SquareExponKernel(kp))

                self._x_kernels = _x_kernels

        if all(isinstance(kp, np.ndarray) for kp in g_kernel_pars):
            _g_kernels = []
            for kp in g_kernel_pars:
                _g_kernels.append(Kernel.SquareExponKernel(kp))
            self._g_kernels = _g_kernels

        self._As = np.array(As)
        self.R = len(As) - 1

        if data_Y is not None:
            self.data = Data(data_time, data_Y)
            self.K = data_Y.shape[1]
            self.N = data_time.size

        try:
            self._store_gpg_covs()
        except:
            pass

    def _parse_component_k_for_g(self, k, mux, Sxx):

        N = self.N
        I = np.diag(np.ones(N))

        Skinv = _back_sub(self.S_chol[k], I)
        Pk = np.dot(self.Cxdx[k].T, _back_sub(self.Lxx[k], I))

        mk, cov_invk = _parse_component_k_for_g(k, self._As, mux, Sxx, Skinv,
                                                Pk, N)
        """
        print(mk)
        def _obj_func(g):
            G = np.concatenate((np.ones(self.N),
                                g)).reshape(self.R+1, self.N)
            return _comp_k(k, G, Skinv, self._As, Pk, mux, Sxx, N)

        from scipy.optimize import minimize
        res = minimize(_obj_func, np.ones(N*self.R))
        print(res.x)
        assert(np.all(mk == res.x))
        """
        return mk, cov_invk

    def _parse_component_k_for_x(self, k, mug, Sgg):

        N = self.N
        I = np.diag(np.ones(N))

        Skinv = _back_sub(self.S_chol[k], I)
        Pk = np.dot(self.Cxdx[k].T, _back_sub(self.Lxx[k], I))

        return hfunc(k, Skinv, Pk, mug, Sgg, self._As, self.N, self.K, self.R)
        """
        sigmas = self._sigmas.value()

        def _obj_func(x):
            X = x.reshape(self.K, self.N)
            val1 = _comp_k_for_x(k, X, Skinv, self._As, Pk, mug, Sgg, self.N, self.R)
            val2 = 0
#            val2 = np.sum([norm.logpdf(self.data.Y[:, k], loc=X[k, :], scale=sigmas[k])
#                           for k in range(self.K)])
            return -(val1+val2)

        x0 = self.data.Y.T.ravel()

        from scipy.optimize import minimize
        res = minimize(_obj_func, x0)
        print("=======================")
        print(np.linalg.inv(res.hess_inv))
        print("=======================")        
#        print(_obj_func(np.zeros(res.x.size)) <= res.fun)
        return res.x, np.linalg.inv(res.hess_inv)
    """

    def _store_gpdx_covs(self):
        _store_gpdx_covs(self)

    def _store_gpg_covs(self):
        _store_gpg_covs(self)

    def _get_g_conditional(self, mux, Sxx):
        ms = []
        cinvs = []
        for k in range(self.K):
            try:
                m, ci = self._parse_component_k_for_g(k, mux, Sxx)
                ms.append(m)
                cinvs.append(ci)
            except:
                pass

        ci_prior = block_diag(*(cinv for cinv in self.Cgg_inv))
        mean_prior = np.zeros(ci_prior.shape[0])
        print(np.linalg.norm(cinvs[0]))
        print(np.linalg.norm(ci_prior))
        ms.append(mean_prior)
        cinvs.append(ci_prior)

        mean, cov = _prod_norm_pars(ms, cinvs)
        return mean, cov

    def _get_x_conditional(self, mug, Sgg):
        ms = []
        cinvs = []

        for k in range(self.K):
            try:
                m, ci = self._parse_component_k_for_x(k, mug, Sgg)
                ms.append(m)
                cinvs.append(ci)
            except:
                print("Sad face!")
                pass

        ms.append(self.data.Y.T.ravel())
        sigmas = self._sigmas.value()
        In = np.ones(self.N)
        ci_data = np.diag(
            np.concatenate((In / sigmas[0]**2, In / sigmas[1]**2)))
        cinvs.append(ci_data)

        C1inv = _back_sub(self.Lxx[0], np.diag(np.ones(self.N)))
        C2inv = _back_sub(self.Lxx[1], np.diag(np.ones(self.N)))
        ci = block_diag(C1inv, C2inv)
        mi = np.zeros(ci.shape[0])
        ms.append(mi)
        cinvs.append(ci)

        mean, cov = _prod_norm_pars(ms, cinvs)
        return mean, cov

    def func(self, k, mg, Cgg):
        I = np.diag(np.ones(self.N))
        Skinv = _back_sub(self.S_chol[k], I)
        Pk = np.dot(self.Cxdx[k].T, _back_sub(self.Lxx[k], I))

        hfunc(k, Skinv, Pk, mg, Cgg, self._As, self.N, self.K, self.R)

        self._parse_component_k_for_x(k, mg, Cgg)
Пример #6
0
def test2(mod):
    # Tests the update step for _phi_k_mh_update
    from gpode.bayes import Parameter, ParameterCollection
    from lindod_src import MGPLinearAdapGrad3, _log_eq20_k, _x_gp_pars
    from scipy.optimize import minimize
    import matplotlib.pyplot as plt

    K = 2
    xkp = []
    for k in range(K):
        p1 = Parameter("phi_{}_1".format(k),
                       prior=("gamma", (4, 0.2)),
                       proposal=("normal rw", 0.1))
        p2 = Parameter("phi_{}_2".format(k),
                       prior=("gamma", (4, 0.2)),
                       proposal=("normal rw", 0.1))
        phi_k = ParameterCollection([p1, p2], independent=True)
        xkp.append(phi_k)

    m = MGPLinearAdapGrad3(xkp)
    m.model_setup()
    m.data = mod.data
    m._X = mod.latent_X
    m._dXdt = mod._dXdt
    m._As = mod.As
    m._Gs = mod.Gs
    m._gammas = mod.gammas

    rv_phi_0 = []
    rv_phi_1 = []
    N_SIM = 2000
    BURN_IN = N_SIM / 4
    for nt in range(N_SIM):
        for k in range(2):
            m._phi_k_mh_update(k)
        if nt > BURN_IN and nt % 10 == 0:
            rv_phi_0.append(m._x_kernels[0].kpar.value())
            rv_phi_1.append(m._x_kernels[1].kpar.value())

    rv_phi_0 = np.array(rv_phi_0)
    rv_phi_1 = np.array(rv_phi_1)

    fig1 = plt.figure()
    ax = fig1.add_subplot(121)
    ax.plot(rv_phi_0)
    ax = fig1.add_subplot(122)
    ax.plot(rv_phi_1)

    print(np.mean(rv_phi_0, axis=0))
    print(np.mean(rv_phi_1, axis=0))

    def objfunc(z):
        try:
            val = 0.
            zks = [z[:2], z[2:]]
            for k, zk in enumerate(zks):
                kern = m._x_kernels[k]
                kpar = kern.kpar

                xk = m._X[:, k]
                fk = m._dXdt(m._X, m._As, m._Gs)[:, k]

                Lxx, mdx_x, Cdxdx_x = _x_gp_pars(zk, kern, m.data.time,
                                                 m._X[:, k])

                val += _log_eq20_k(xk,
                                   fk,
                                   mdx_x,
                                   Lxx,
                                   Cdxdx_x,
                                   m._gammas[k],
                                   phi_k_val=zk,
                                   phi_k_prior=kpar.prior)
            return -val
        except:
            return np.inf

    res = minimize(objfunc, np.ones(4))
    print(res.x[:2])
    print(res.x[2:])

    plt.show()