def plot_model_fit(model_df, predictions, x_col, y_col, condition_x, condition_y): """Scatterplot of y data vs x data with the natural cubic spline visualized and the line y=x for reference Parameters ---------- model_df: DataFrame Dataframe with columns x_col and y_col for modeling predictions: array_like Array of predictions from the fit model x_col: str X column in data to model y_col: str Y column in data to model condition_x: str Name of the plot's x axis condition_y: str Name of the plot's y axis Returns ------- matplotlib.axes.Axes matplotlib.figure.Figure """ fig, ax = plt.subplots(figsize=(4, 4)) gpplot.point_densityplot(data=model_df, x=x_col, y=y_col, alpha=0.3) ordered_x, ordered_predictions = zip( *sorted(zip(model_df[x_col], predictions))) ab_ends = [ax.get_xlim()[0], ax.get_xlim()[1]] plt.plot(ab_ends, ab_ends, label='y=x', linestyle='--', color='grey') plt.plot(ordered_x, ordered_predictions, color='black', label='fit line') plt.xlabel(condition_x) plt.ylabel(condition_y) plt.legend() return fig, ax
def test_add_correlation(scatter_data): ax = gpplot.point_densityplot(scatter_data, 'x', 'y') ax = gpplot.add_correlation(scatter_data, 'x', 'y', size=12, color='blue')
def test_add_xyline(scatter_data): ax = gpplot.point_densityplot(scatter_data, 'x', 'y') ax = gpplot.add_xy_line()
def test_point_density_plot(scatter_data): ax = gpplot.point_densityplot(scatter_data, 'x', 'y')