Пример #1
0
class GPSTrainingGUI(object):
    def __init__(self, hyperparams):
        self._hyperparams = hyperparams
        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = None

        # GPS Training Status.
        self.mode = config[
            'initial_mode']  # Modes: run, wait, end, request, process.
        self.request = None  # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',
            'stop': 'red',
            'reset': 'yellow',
            'go': 'green',
            'fail': 'magenta',
        }
        self._first_update = True

        # Actions.
        actions_arr = [
            Action('stop', 'stop', self.request_stop, axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('go', 'go', self.request_go, axis_pos=2),
            Action('fail', 'fail', self.request_fail, axis_pos=3),
        ]

        # Setup figure.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        for key in plt.rcParams:
            if key.startswith('keymap.'):
                plt.rcParams[key] = ''

        self._fig = plt.figure(figsize=config['figsize'])
        self._fig.subplots_adjust(left=0.01,
                                  bottom=0.01,
                                  right=0.99,
                                  top=0.99,
                                  wspace=0,
                                  hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(16, 8)
        self._gs_action_panel = self._gs[0:1, 0:8]
        self._gs_action_output = self._gs[1:2, 0:4]
        self._gs_status_output = self._gs[2:3, 0:4]
        self._gs_cost_plotter = self._gs[1:3, 4:8]
        self._gs_gt_cost_plotter = self._gs[4:6, 4:8]
        self._gs_algthm_output = self._gs[3:9, 0:4]
        if config['image_on']:
            self._gs_traj_visualizer = self._gs[9:16, 0:4]
            self._gs_image_visualizer = self._gs[9:16, 4:8]
        else:
            self._gs_traj_visualizer = self._gs[9:16, 0:8]

        # Create GUI components.
        self._action_panel = ActionPanel(self._fig, self._gs_action_panel, 1,
                                         4, actions_arr)
        self._action_output = Textbox(self._fig,
                                      self._gs_action_output,
                                      border_on=True)
        self._status_output = Textbox(self._fig,
                                      self._gs_status_output,
                                      border_on=False)
        self._algthm_output = Textbox(
            self._fig,
            self._gs_algthm_output,
            max_display_size=config['algthm_output_max_display_size'],
            log_filename=self._log_filename,
            fontsize=config['algthm_output_fontsize'],
            font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig,
                                         self._gs_cost_plotter,
                                         color='blue',
                                         label='mean cost')
        self._gt_cost_plotter = MeanPlotter(self._fig,
                                            self._gs_gt_cost_plotter,
                                            color='red',
                                            label='ground truth cost')
        self._traj_visualizer = Plotter3D(
            self._fig,
            self._gs_traj_visualizer,
            num_plots=self._hyperparams['conditions'])
        if config['image_on']:
            self._image_visualizer = ImageVisualizer(
                self._fig,
                self._gs_image_visualizer,
                cropsize=config['image_size'],
                rostopic=config['image_topic'],
                show_overlay_buttons=True)

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        if config['initial_mode'] == 'run':
            self.run_mode()
        else:
            self.wait_mode()

        # Setup 3D Trajectory Visualizer plot titles and legends
        for m in range(self._hyperparams['conditions']):
            self._traj_visualizer.set_title(m, 'Condition %d' % (m))
        self._traj_visualizer.add_legend(linestyle='-',
                                         marker='None',
                                         color='green',
                                         label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-',
                                         marker='None',
                                         color='blue',
                                         label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None',
                                         marker='x',
                                         color=(0.5, 0, 0),
                                         label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-',
                                         marker='None',
                                         color='red',
                                         label='LG Controller Distributions')

        self._fig.canvas.draw()

        # Display calculating thread
        def display_calculating(delay, run_event):
            while True:
                if not run_event.is_set():
                    run_event.wait()
                if run_event.is_set():
                    self.set_status_text('Calculating.')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating..')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating...')
                    time.sleep(delay)

        self._calculating_run = threading.Event()
        self._calculating_thread = threading.Thread(
            target=display_calculating, args=(1, self._calculating_run))
        self._calculating_thread.daemon = True
        self._calculating_thread.start()

    # GPS Training functions
    def request_stop(self, event=None):
        self.request_mode('stop')

    def request_reset(self, event=None):
        self.request_mode('reset')

    def request_go(self, event=None):
        self.request_mode('go')

    def request_fail(self, event=None):
        self.request_mode('fail')

    def request_mode(self, request):
        """
        Sets the request mode (stop, reset, go, fail). The request is read by
        gps_main before sampling, and the appropriate action is taken.
        """
        self.mode = 'request'
        self.request = request
        self.set_action_text(self.request + ' requested')
        self.set_action_bgcolor(self._colors[self.request], alpha=0.2)

    def process_mode(self):
        """
        Completes the current request, after it is first read by gps_main.
        Displays visual confirmation that the request was processed,
        displays any error messages, and then switches into mode 'run' or 'wait'.
        """
        self.mode = 'process'
        self.set_action_text(self.request + ' processed')
        self.set_action_bgcolor(self._colors[self.request], alpha=1.0)
        if self.err_msg:
            self.set_action_text(self.request + ' processed' + '\nERROR: ' +
                                 self.err_msg)
            self.err_msg = None
            time.sleep(1.0)
        else:
            time.sleep(0.5)
        if self.request in ('stop', 'reset', 'fail'):
            self.wait_mode()
        elif self.request == 'go':
            self.run_mode()
        self.request = None

    def wait_mode(self):
        self.mode = 'wait'
        self.set_action_text('waiting')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def run_mode(self):
        self.mode = 'run'
        self.set_action_text('running')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def end_mode(self):
        self.mode = 'end'
        self.set_action_text('ended')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def estop(self, event=None):
        self.set_action_text('estop: NOT IMPLEMENTED')

    # GUI functions
    def set_action_text(self, text):
        self._action_output.set_text(text)
        self._cost_plotter.draw_ticklabels()  # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def set_action_bgcolor(self, color, alpha=1.0):
        self._action_output.set_bgcolor(color, alpha)
        self._cost_plotter.draw_ticklabels()  # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def set_status_text(self, text):
        self._status_output.set_text(text)
        self._cost_plotter.draw_ticklabels()  # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def set_output_text(self, text):
        self._algthm_output.set_text(text)
        self._cost_plotter.draw_ticklabels()  # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def append_output_text(self, text):
        self._algthm_output.append_text(text)
        self._cost_plotter.draw_ticklabels()  # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def start_display_calculating(self):
        self._calculating_run.set()

    def stop_display_calculating(self):
        self._calculating_run.clear()

    def set_image_overlays(self, condition):
        """
        Sets up the image visualizer with what images to overlay if
        "overlay_initial_image" or "overlay_target_image" is pressed.
        """
        if not config['image_on'] or not self._target_filename:
            return
        initial_image = load_data_from_npz(self._target_filename,
                                           config['image_overlay_actuator'],
                                           str(condition),
                                           'initial',
                                           'image',
                                           default=None)
        target_image = load_data_from_npz(self._target_filename,
                                          config['image_overlay_actuator'],
                                          str(condition),
                                          'target',
                                          'image',
                                          default=None)
        self._image_visualizer.set_initial_image(
            initial_image, alpha=config['image_overlay_alpha'])
        self._image_visualizer.set_target_image(
            target_image, alpha=config['image_overlay_alpha'])

    # Iteration update functions
    def update(self, itr, algorithm, agent, traj_sample_lists,
               pol_sample_lists):
        """
        After each iteration, update the iteration data output, the cost plot,
        and the 3D trajectory visualizations (if end effector points exist).
        """
        if self._first_update:
            policy_titles = pol_sample_lists != None
            self._output_column_titles(algorithm, policy_titles)
            self._first_update = False
        costs = [
            np.mean(np.sum(algorithm.prev[m].cs, axis=1))
            for m in range(algorithm.M)
        ]
        if algorithm._hyperparams['ioc']:
            gt_costs = [
                np.mean(np.sum(algorithm.prev[m].cgt, axis=1))
                for m in range(algorithm.M)
            ]
            self._update_iteration_data(itr, algorithm, gt_costs,
                                        pol_sample_lists)
            self._gt_cost_plotter.update(gt_costs, t=itr)
        else:
            self._update_iteration_data(itr, algorithm, costs,
                                        pol_sample_lists)
        self._cost_plotter.update(costs, t=itr)
        if END_EFFECTOR_POINTS in agent.x_data_types:
            self._update_trajectory_visualizations(algorithm, agent,
                                                   traj_sample_lists,
                                                   pol_sample_lists)

        self._fig.canvas.draw()
        self._fig.canvas.flush_events()  # Fixes bug in Qt4Agg backend
        # import pdb; pdb.set_trace()

    def _output_column_titles(self, algorithm, policy_titles=False):
        """
        Setup iteration data column titles: iteration, average cost, and for
        each condition the mean cost over samples, step size, linear Guassian
        controller entropies, and initial/final KL divergences for BADMM.
        """
        self.set_output_text(self._hyperparams['experiment_name'])
        if policy_titles:
            condition_titles = '%3s | %8s %12s' % ('', '', '')
            itr_data_fields = '%3s | %8s %12s' % ('itr', 'avg_cost',
                                                  'avg_pol_cost')
        else:
            condition_titles = '%3s | %8s' % ('', '')
            itr_data_fields = '%3s | %8s' % ('itr', 'avg_cost')
        for m in range(algorithm.M):
            condition_titles += ' | %8s %9s %-7d' % ('', 'condition', m)
            itr_data_fields += ' | %8s %8s %8s' % ('  cost  ', '  step  ',
                                                   'entropy ')
            if algorithm.prev[0].pol_info is not None:
                condition_titles += ' %8s %8s' % ('', '')
                itr_data_fields += ' %8s %8s' % ('kl_div_i', 'kl_div_f')
            if algorithm._hyperparams['ioc'] and not algorithm._hyperparams[
                    'learning_from_prior']:
                condition_titles += ' %8s' % ('')
                itr_data_fields += ' %8s' % ('kl_div')
            if algorithm._hyperparams['learning_from_prior']:
                condition_titles += ' %8s' % ('')
                itr_data_fields += ' %8s' % ('mean_dist')
            if policy_titles:
                condition_titles += ' %8s %8s %8s' % ('', '', '')
                itr_data_fields += ' %8s %8s %8s' % ('pol_cost', 'kl_div_i',
                                                     'kl_div_f')
        self.append_output_text(condition_titles)
        self.append_output_text(itr_data_fields)

    def _update_iteration_data(self, itr, algorithm, costs, pol_sample_lists):
        """
        Update iteration data information: iteration, average cost, and for
        each condition the mean cost over samples, step size, linear Guassian
        controller entropies, and initial/final KL divergences for BADMM.
        """
        avg_cost = np.mean(costs)
        if pol_sample_lists is not None:
            pol_costs = [np.mean([np.sum(algorithm.cost[m].eval(s)[0]) \
                    for s in pol_sample_lists[m]]) \
                    for m in range(algorithm.M)]
            itr_data = '%3d | %8.2f %12.2f' % (itr, avg_cost,
                                               np.mean(pol_costs))
        else:
            itr_data = '%3d | %8.2f' % (itr, avg_cost)
        for m in range(algorithm.M):
            cost = costs[m]
            step = algorithm.prev[m].step_mult * algorithm.base_kl_step
            entropy = 2 * np.sum(
                np.log(
                    np.diagonal(algorithm.prev[m].traj_distr.chol_pol_covar,
                                axis1=1,
                                axis2=2)))
            itr_data += ' | %8.2f %8.2f %8.2f' % (cost, step, entropy)
            if algorithm.prev[0].pol_info is not None:
                kl_div_i = algorithm.prev[m].pol_info.prev_kl[0]
                kl_div_f = algorithm.prev[m].pol_info.prev_kl[-1]
                itr_data += ' %8.2f %8.2f' % (kl_div_i, kl_div_f)
            if algorithm._hyperparams['ioc'] and not algorithm._hyperparams[
                    'learning_from_prior']:
                itr_data += ' %8.2f' % (algorithm.kl_div[itr][m])
            if algorithm._hyperparams['learning_from_prior']:
                itr_data += ' %8.2f' % (algorithm.dists_to_target[itr][m])
            if pol_sample_lists is not None:
                kl_div_i = algorithm.cur[m].pol_info.init_kl.mean()
                kl_div_f = algorithm.cur[m].pol_info.prev_kl.mean()
                itr_data += ' %8.2f %8.2f %8.2f' % (pol_costs[m], kl_div_i,
                                                    kl_div_f)
        self.append_output_text(itr_data)

    def _update_trajectory_visualizations(self, algorithm, agent,
                                          traj_sample_lists, pol_sample_lists):
        """
        Update 3D trajectory visualizations information: the trajectory samples,
        policy samples, and linear Gaussian controller means and covariances.
        """
        xlim, ylim, zlim = self._calculate_3d_axis_limits(
            traj_sample_lists, pol_sample_lists)
        for m in range(algorithm.M):
            self._traj_visualizer.clear(m)
            self._traj_visualizer.set_lim(i=m, xlim=xlim, ylim=ylim, zlim=zlim)
            self._update_samples_plots(traj_sample_lists, m, 'green',
                                       'Trajectory Samples')
            self._update_linear_gaussian_controller_plots(algorithm, agent, m)
            if pol_sample_lists:
                self._update_samples_plots(pol_sample_lists, m, 'blue',
                                           'Policy Samples')
        self._traj_visualizer.draw()  # this must be called explicitly

    def _calculate_3d_axis_limits(self, traj_sample_lists, pol_sample_lists):
        """
        Calculate the 3D axis limits shared between trajectory plots,
        based on the minimum and maximum xyz values across all samples.
        """
        all_eept = np.empty((0, 3))
        sample_lists = traj_sample_lists
        if pol_sample_lists:
            sample_lists += traj_sample_lists
        for sample_list in sample_lists:
            for sample in sample_list.get_samples():
                ee_pt = sample.get(END_EFFECTOR_POINTS)
                for i in range(ee_pt.shape[1] / 3):
                    ee_pt_i = ee_pt[:, 3 * i + 0:3 * i + 3]
                    all_eept = np.r_[all_eept, ee_pt_i]
        min_xyz = np.amin(all_eept, axis=0)
        max_xyz = np.amax(all_eept, axis=0)
        xlim = buffered_axis_limits(min_xyz[0], max_xyz[0], buffer_factor=1.25)
        ylim = buffered_axis_limits(min_xyz[1], max_xyz[1], buffer_factor=1.25)
        zlim = buffered_axis_limits(min_xyz[2], max_xyz[2], buffer_factor=1.25)
        return xlim, ylim, zlim

    def _update_linear_gaussian_controller_plots(self, algorithm, agent, m):
        """
        Update the linear Guassian controller plots with iteration data,
        for the mean and covariances of the end effector points.
        """
        # Calculate mean and covariance for end effector points
        eept_idx = agent.get_idx_x(END_EFFECTOR_POINTS)
        start, end = eept_idx[0], eept_idx[-1]
        mu, sigma = algorithm.traj_opt.forward(algorithm.prev[m].traj_distr,
                                               algorithm.prev[m].traj_info)
        mu_eept, sigma_eept = mu[:, start:end + 1], sigma[:, start:end + 1,
                                                          start:end + 1]

        # Linear Gaussian Controller Distributions (Red)
        for i in range(mu_eept.shape[1] / 3):
            mu, sigma = mu_eept[:, 3 * i + 0:3 * i +
                                3], sigma_eept[:, 3 * i + 0:3 * i + 3,
                                               3 * i + 0:3 * i + 3]
            self._traj_visualizer.plot_3d_gaussian(
                i=m,
                mu=mu,
                sigma=sigma,
                edges=100,
                linestyle='-',
                linewidth=1.0,
                color='red',
                alpha=0.15,
                label='LG Controller Distributions')

        # Linear Gaussian Controller Means (Dark Red)
        for i in range(mu_eept.shape[1] / 3):
            mu = mu_eept[:, 3 * i + 0:3 * i + 3]
            self._traj_visualizer.plot_3d_points(i=m,
                                                 points=mu,
                                                 linestyle='None',
                                                 marker='x',
                                                 markersize=5.0,
                                                 markeredgewidth=1.0,
                                                 color=(0.5, 0, 0),
                                                 alpha=1.0,
                                                 label='LG Controller Means')

    def _update_samples_plots(self, sample_lists, m, color, label):
        """
        Update the samples plots with iteration data, for the trajectory samples
        and the policy samples.
        """
        samples = sample_lists[m].get_samples()
        for sample in samples:
            ee_pt = sample.get(END_EFFECTOR_POINTS)
            for i in range(ee_pt.shape[1] / 3):
                ee_pt_i = ee_pt[:, 3 * i + 0:3 * i + 3]
                self._traj_visualizer.plot_3d_points(m,
                                                     ee_pt_i,
                                                     color=color,
                                                     label=label)

    def save_figure(self, filename):
        self._fig.savefig(filename)
Пример #2
0
    def __init__(self, hyperparams):
        self._hyperparams = hyperparams
        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = None

        # GPS Training Status.
        self.mode = config[
            'initial_mode']  # Modes: run, wait, end, request, process.
        self.request = None  # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',
            'stop': 'red',
            'reset': 'yellow',
            'go': 'green',
            'fail': 'magenta',
        }
        self._first_update = True

        # Actions.
        actions_arr = [
            Action('stop', 'stop', self.request_stop, axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('go', 'go', self.request_go, axis_pos=2),
            Action('fail', 'fail', self.request_fail, axis_pos=3),
        ]

        # Setup figure.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        for key in plt.rcParams:
            if key.startswith('keymap.'):
                plt.rcParams[key] = ''

        self._fig = plt.figure(figsize=config['figsize'])
        self._fig.subplots_adjust(left=0.01,
                                  bottom=0.01,
                                  right=0.99,
                                  top=0.99,
                                  wspace=0,
                                  hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(16, 8)
        self._gs_action_panel = self._gs[0:1, 0:8]
        self._gs_action_output = self._gs[1:2, 0:4]
        self._gs_status_output = self._gs[2:3, 0:4]
        self._gs_cost_plotter = self._gs[1:3, 4:8]
        self._gs_gt_cost_plotter = self._gs[4:6, 4:8]
        self._gs_algthm_output = self._gs[3:9, 0:4]
        if config['image_on']:
            self._gs_traj_visualizer = self._gs[9:16, 0:4]
            self._gs_image_visualizer = self._gs[9:16, 4:8]
        else:
            self._gs_traj_visualizer = self._gs[9:16, 0:8]

        # Create GUI components.
        self._action_panel = ActionPanel(self._fig, self._gs_action_panel, 1,
                                         4, actions_arr)
        self._action_output = Textbox(self._fig,
                                      self._gs_action_output,
                                      border_on=True)
        self._status_output = Textbox(self._fig,
                                      self._gs_status_output,
                                      border_on=False)
        self._algthm_output = Textbox(
            self._fig,
            self._gs_algthm_output,
            max_display_size=config['algthm_output_max_display_size'],
            log_filename=self._log_filename,
            fontsize=config['algthm_output_fontsize'],
            font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig,
                                         self._gs_cost_plotter,
                                         color='blue',
                                         label='mean cost')
        self._gt_cost_plotter = MeanPlotter(self._fig,
                                            self._gs_gt_cost_plotter,
                                            color='red',
                                            label='ground truth cost')
        self._traj_visualizer = Plotter3D(
            self._fig,
            self._gs_traj_visualizer,
            num_plots=self._hyperparams['conditions'])
        if config['image_on']:
            self._image_visualizer = ImageVisualizer(
                self._fig,
                self._gs_image_visualizer,
                cropsize=config['image_size'],
                rostopic=config['image_topic'],
                show_overlay_buttons=True)

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        if config['initial_mode'] == 'run':
            self.run_mode()
        else:
            self.wait_mode()

        # Setup 3D Trajectory Visualizer plot titles and legends
        for m in range(self._hyperparams['conditions']):
            self._traj_visualizer.set_title(m, 'Condition %d' % (m))
        self._traj_visualizer.add_legend(linestyle='-',
                                         marker='None',
                                         color='green',
                                         label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-',
                                         marker='None',
                                         color='blue',
                                         label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None',
                                         marker='x',
                                         color=(0.5, 0, 0),
                                         label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-',
                                         marker='None',
                                         color='red',
                                         label='LG Controller Distributions')

        self._fig.canvas.draw()

        # Display calculating thread
        def display_calculating(delay, run_event):
            while True:
                if not run_event.is_set():
                    run_event.wait()
                if run_event.is_set():
                    self.set_status_text('Calculating.')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating..')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating...')
                    time.sleep(delay)

        self._calculating_run = threading.Event()
        self._calculating_thread = threading.Thread(
            target=display_calculating, args=(1, self._calculating_run))
        self._calculating_thread.daemon = True
        self._calculating_thread.start()
Пример #3
0
class GPSTrainingGUI(object):
    """ GPS Training GUI class. """
    def __init__(self, hyperparams):
        self._hyperparams = copy.deepcopy(common_config)
        self._hyperparams.update(copy.deepcopy(gps_training_config))
        self._hyperparams.update(hyperparams)

        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = ''

        # GPS Training Status.
        self.mode = 'run'  # Modes: run, wait, end, request, process.
        self.request = None  # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',

            'stop': 'red',
            'reset': 'yellow',
            'go': 'green',
            'fail': 'magenta',
        }
        self._first_update = True

        # Actions.
        actions_arr = [
            Action('stop', 'stop', self.request_stop, axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('go', 'go', self.request_go, axis_pos=2),
            Action('fail', 'fail', self.request_fail, axis_pos=3),
        ]
        self._actions = {action._key: action for action in actions_arr}
        for key, action in self._actions.iteritems():
            if key in self._hyperparams['keyboard_bindings']:
                action._kb = self._hyperparams['keyboard_bindings'][key]
            if key in self._hyperparams['ps3_bindings']:
                action._pb = self._hyperparams['ps3_bindings'][key]

        # GUI Components.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        # Remove 's' keyboard shortcut for saving.
        plt.rcParams['keymap.save'] = ''

        self._fig = plt.figure(figsize=(12, 12))
        self._fig.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99, wspace=0, hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(16, 8)
        self._gs_action_axis        = self._gs[0:2,  0:8]
        self._gs_action_output      = self._gs[2:3,  0:4]
        self._gs_status_output      = self._gs[3:4,  0:4]
        self._gs_cost_plotter       = self._gs[2:4,  4:8]
        self._gs_algthm_output      = self._gs[4:8,  0:8]
        self._gs_traj_visualizer    = self._gs[8:16, 0:4]
        self._gs_image_visualizer   = self._gs[8:16, 4:8]

        # Create GUI components.
        self._action_axis = ActionAxis(self._fig, self._gs_action_axis, 1, 4, self._actions,
                ps3_process_rate=self._hyperparams['ps3_process_rate'],
                ps3_topic=self._hyperparams['ps3_topic'],
                ps3_button=self._hyperparams['ps3_button'],
                inverted_ps3_button=self._hyperparams['inverted_ps3_button'])
        self._action_output = OutputAxis(self._fig, self._gs_action_output, border_on=True)
        self._status_output = OutputAxis(self._fig, self._gs_status_output, border_on=False)
        self._algthm_output = OutputAxis(self._fig, self._gs_algthm_output, max_display_size=15,
                log_filename=self._log_filename, fontsize=10, font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig, self._gs_cost_plotter, color='blue', label='mean cost')
        self._traj_visualizer = Plotter3D(self._fig, self._gs_traj_visualizer, num_plots=self._hyperparams['conditions'])
        self._image_visualizer = ImageVisualizer(self._fig, self._gs_image_visualizer,
                cropsize=(240, 240), rostopic=self._hyperparams['image_topic'], show_overlay_buttons=True)

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        self.run_mode()

        # WARNING: Make sure the legend values in UPDATE match the below linestyles/markers and colors
        [self._traj_visualizer.set_title(m, 'Condition %d' % (m)) for m in range(self._hyperparams['conditions'])]
        self._traj_visualizer.add_legend(linestyle='-',    marker='None', color='green',     label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-',    marker='None', color='blue',      label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None', marker='x',    color=(0.5, 0, 0), label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-',    marker='None', color='red',       label='LG Controller Distributions')

        self._fig.canvas.draw()

    # GPS Training Functions.
    #TODO: Docstrings here.
    def request_stop(self, event=None):
        self.request_mode('stop')

    def request_reset(self, event=None):
        self.request_mode('reset')

    def request_go(self, event=None):
        self.request_mode('go')

    def request_fail(self, event=None):
        self.request_mode('fail')

    def request_mode(self, request):
        self.mode = 'request'
        self.request = request
        self.set_action_text(self.request + ' requested')
        self.set_action_bgcolor(self._colors[self.request], alpha=0.2)

    def process_mode(self):
        self.mode = 'process'
        self.set_action_text(self.request + ' processed')
        self.set_action_bgcolor(self._colors[self.request], alpha=1.0)
        if self.err_msg:
            self.set_action_text(self.request + ' processed' + '\nERROR: ' +
                                 self.err_msg)
            self.err_msg = None
            time.sleep(1.0)
        else:
            time.sleep(0.5)
        if self.request in ('stop', 'reset', 'fail'):
            self.wait_mode()
        elif self.request == 'go':
            self.run_mode()
        self.request = None

    def wait_mode(self):
        self.mode = 'wait'
        self.set_action_text('waiting')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def run_mode(self):
        self.mode = 'run'
        self.set_action_text('running')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def end_mode(self):
        self.mode = 'end'
        self.set_action_text('ended')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def estop(self, event=None):
        self.set_action_text('estop: NOT IMPLEMENTED')

    # GUI functions.
    def set_action_text(self, text):
        self._action_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_action_bgcolor(self, color, alpha=1.0):
        self._action_output.set_bgcolor(color, alpha)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_status_text(self, text):
        self._status_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_output_text(self, text):
        self._algthm_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def append_output_text(self, text):
        self._algthm_output.append_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_image_overlays(self, condition):
        if len(self._target_filename) == 0:
            return
        initial_image = load_data_from_npz(self._target_filename, self._hyperparams['image_actuator'], str(condition),
                'initial', 'image', default=np.zeros((1,1,3)))
        target_image  = load_data_from_npz(self._target_filename, self._hyperparams['image_actuator'], str(condition),
                'target',  'image', default=np.zeros((1,1,3)))
        self._image_visualizer.set_initial_image(initial_image, alpha=0.3)
        self._image_visualizer.set_target_image(target_image, alpha=0.3)

    def update(self, itr, algorithm, agent, traj_sample_lists, pol_sample_lists):
        # Plot Costs
        if algorithm.M == 1:
            # Update plot with each sample's cost (summed over time).
            costs = np.sum(algorithm.prev[0].cs, axis=1)
        else:
            # Update plot with each condition's mean sample cost (summed over time).
            costs = [np.mean(np.sum(algorithm.prev[m].cs, axis=1)) for m in range(algorithm.M)]
        self._cost_plotter.update(costs, t=itr)

        # Setup iteration data column titles and 3D visualization plot titles and legend
        if self._first_update:
            self.set_output_text(self._hyperparams['experiment_name'])
            condition_titles = '%3s | %8s' % ('', '')
            itr_data_fields  = '%3s | %8s' % ('itr', 'avg_cost')
            for m in range(algorithm.M):
                condition_titles += ' | %8s %9s %-7d' % ('', 'condition', m)
                itr_data_fields  += ' | %8s %8s %8s' % ('  cost  ', '  step  ', 'entropy ')
                if algorithm.prev[0].pol_info is not None:
                    condition_titles += ' %8s %8s' % ('', '')
                    itr_data_fields  += ' %8s %8s' % ('kl_div_i', 'kl_div_f')
            self.append_output_text(condition_titles)
            self.append_output_text(itr_data_fields)

            self._first_update = False

        # Print Iteration Data
        avg_cost = np.mean(costs)
        itr_data = '%3d | %8.2f' % (itr, avg_cost)
        for m in range(algorithm.M):
            cost = costs[m]
            step = algorithm.prev[m].step_mult
            entropy = 2*np.sum(np.log(np.diagonal(algorithm.prev[m].traj_distr.chol_pol_covar, axis1=1, axis2=2)))
            itr_data += ' | %8.2f %8.2f %8.2f' % (cost, step, entropy)
            if algorithm.prev[0].pol_info is not None:
                kl_div_i = algorithm.prev[m].pol_info.prev_kl[0]
                kl_div_f = algorithm.prev[m].pol_info.prev_kl[-1]
                itr_data += ' %8.2f %8.2f' % (kl_div_i, kl_div_f)
        self.append_output_text(itr_data)

        if END_EFFECTOR_POINTS not in agent.x_data_types:
            # Skip plotting samples.
            self._traj_visualizer.draw()    # this must be called explicitly
            self._fig.canvas.draw()
            self._fig.canvas.flush_events() # Fixes bug in Qt4Agg backend
            return



        # TODO(xinyutan) - this assumes that END_EFFECTOR_POINTS are in the
        # sample, which is not true for box2d. quick fix is above.
        # Calculate xlim, ylim, zlim for 3D visualizations from traj_sample_lists and pol_sample_lists
        # (this clips off LQG means/distributions that are not in the area of interest)
        all_eept = np.empty((0, 3))
        sample_lists = traj_sample_lists + pol_sample_lists if pol_sample_lists else traj_sample_lists
        for sample_list in sample_lists:
            for sample in sample_list.get_samples():
                ee_pt = sample.get(END_EFFECTOR_POINTS)
                for i in range(ee_pt.shape[1]/3):
                    ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                    all_eept = np.r_[all_eept, ee_pt_i]
        min_xyz = np.amin(all_eept, axis=0)
        max_xyz = np.amax(all_eept, axis=0)
        xlim, ylim, zlim = (min_xyz[0], max_xyz[0]), (min_xyz[1], max_xyz[1]), (min_xyz[2], max_xyz[2])

        # Plot 3D Visualizations
        for m in range(algorithm.M):
            # Clear previous plots
            self._traj_visualizer.clear(m)
            self._traj_visualizer.set_lim(i=m, xlim=xlim, ylim=ylim, zlim=zlim)

            # Linear Gaussian Controller Distributions (Red)
            mu, sigma = algorithm.traj_opt.forward(algorithm.prev[m].traj_distr, algorithm.prev[m].traj_info)
            eept_idx = agent.get_idx_x(END_EFFECTOR_POINTS)
            start, end = eept_idx[0], eept_idx[-1]
            mu_eept, sigma_eept = mu[:, start:end+1], sigma[:, start:end+1, start:end+1]

            for i in range(mu_eept.shape[1]/3):
                mu, sigma = mu_eept[:, 3*i+0:3*i+3], sigma_eept[:, 3*i+0:3*i+3, 3*i+0:3*i+3]
                self._traj_visualizer.plot_3d_gaussian(i=m, mu=mu, sigma=sigma, edges=100, linestyle='-', linewidth=1.0, color='red', alpha=0.15, label='LG Controller Distributions')

            # Linear Gaussian Controller Means (Dark Red)
            for i in range(mu_eept.shape[1]/3):
                mu = mu_eept[:, 3*i+0:3*i+3]
                self._traj_visualizer.plot_3d_points(i=m, points=mu, linestyle='None', marker='x', markersize=5.0, markeredgewidth=1.0, color=(0.5, 0, 0), alpha=1.0, label='LG Controller Means')

            # Trajectory Samples (Green)
            traj_samples = traj_sample_lists[m].get_samples()
            for sample in traj_samples:
                ee_pt = sample.get(END_EFFECTOR_POINTS)
                for i in range(ee_pt.shape[1]/3):
                    ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                    self._traj_visualizer.plot_3d_points(m, ee_pt_i, color='green', label='Trajectory Samples')

            # Policy Samples (Blue)
            if pol_sample_lists is not None:
                pol_samples = pol_sample_lists[m].get_samples()
                for sample in pol_samples:
                    ee_pt = sample.get(END_EFFECTOR_POINTS)
                    for i in range(ee_pt.shape[1]/3):
                        ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                        self._traj_visualizer.plot_3d_points(m, ee_pt_i, color='blue', label='Policy Samples')
        self._traj_visualizer.draw()    # this must be called explicitly
        self._fig.canvas.draw()
        self._fig.canvas.flush_events() # Fixes bug in Qt4Agg backend

    def save_figure(self, filename):
        self._fig.savefig(filename)
Пример #4
0
    def __init__(self, hyperparams):
        self._hyperparams = copy.deepcopy(common_config)
        self._hyperparams.update(copy.deepcopy(gps_training_config))
        self._hyperparams.update(hyperparams)

        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = ''

        # GPS Training Status.
        self.mode = 'run'  # Modes: run, wait, end, request, process.
        self.request = None  # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',

            'stop': 'red',
            'reset': 'yellow',
            'go': 'green',
            'fail': 'magenta',
        }
        self._first_update = True

        # Actions.
        actions_arr = [
            Action('stop', 'stop', self.request_stop, axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('go', 'go', self.request_go, axis_pos=2),
            Action('fail', 'fail', self.request_fail, axis_pos=3),
        ]
        self._actions = {action._key: action for action in actions_arr}
        for key, action in self._actions.iteritems():
            if key in self._hyperparams['keyboard_bindings']:
                action._kb = self._hyperparams['keyboard_bindings'][key]
            if key in self._hyperparams['ps3_bindings']:
                action._pb = self._hyperparams['ps3_bindings'][key]

        # GUI Components.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        # Remove 's' keyboard shortcut for saving.
        plt.rcParams['keymap.save'] = ''

        self._fig = plt.figure(figsize=(12, 12))
        self._fig.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99, wspace=0, hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(16, 8)
        self._gs_action_axis        = self._gs[0:2,  0:8]
        self._gs_action_output      = self._gs[2:3,  0:4]
        self._gs_status_output      = self._gs[3:4,  0:4]
        self._gs_cost_plotter       = self._gs[2:4,  4:8]
        self._gs_algthm_output      = self._gs[4:8,  0:8]
        self._gs_traj_visualizer    = self._gs[8:16, 0:4]
        self._gs_image_visualizer   = self._gs[8:16, 4:8]

        # Create GUI components.
        self._action_axis = ActionAxis(self._fig, self._gs_action_axis, 1, 4, self._actions,
                ps3_process_rate=self._hyperparams['ps3_process_rate'],
                ps3_topic=self._hyperparams['ps3_topic'],
                ps3_button=self._hyperparams['ps3_button'],
                inverted_ps3_button=self._hyperparams['inverted_ps3_button'])
        self._action_output = OutputAxis(self._fig, self._gs_action_output, border_on=True)
        self._status_output = OutputAxis(self._fig, self._gs_status_output, border_on=False)
        self._algthm_output = OutputAxis(self._fig, self._gs_algthm_output, max_display_size=15,
                log_filename=self._log_filename, fontsize=10, font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig, self._gs_cost_plotter, color='blue', label='mean cost')
        self._traj_visualizer = Plotter3D(self._fig, self._gs_traj_visualizer, num_plots=self._hyperparams['conditions'])
        self._image_visualizer = ImageVisualizer(self._fig, self._gs_image_visualizer,
                cropsize=(240, 240), rostopic=self._hyperparams['image_topic'], show_overlay_buttons=True)

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        self.run_mode()

        # WARNING: Make sure the legend values in UPDATE match the below linestyles/markers and colors
        [self._traj_visualizer.set_title(m, 'Condition %d' % (m)) for m in range(self._hyperparams['conditions'])]
        self._traj_visualizer.add_legend(linestyle='-',    marker='None', color='green',     label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-',    marker='None', color='blue',      label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None', marker='x',    color=(0.5, 0, 0), label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-',    marker='None', color='red',       label='LG Controller Distributions')

        self._fig.canvas.draw()
Пример #5
0
    def __init__(self, hyperparams):
        self._hyperparams = hyperparams
        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = None

        # GPS Training Status.
        self.mode = config['initial_mode']  # Modes: run, wait, end, request, process.
        self.request = None                 # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',

            'stop': 'red',
            'reset': 'yellow',
            'go': 'green',
            'fail': 'magenta',
        }
        self._first_update = True

        # Actions.
        actions_arr = [
            Action('stop',  'stop',  self.request_stop,  axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('go',    'go',    self.request_go,    axis_pos=2),
            Action('fail',  'fail',  self.request_fail,  axis_pos=3),
        ]

        # Setup figure.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        for key in plt.rcParams:
            if key.startswith('keymap.'):
                plt.rcParams[key] = ''

        self._fig = plt.figure(figsize=config['figsize'])
        self._fig.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99,
                wspace=0, hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(16, 8)
        self._gs_action_panel           = self._gs[0:1,  0:8]
        self._gs_action_output          = self._gs[1:2,  0:4]
        self._gs_status_output          = self._gs[2:3,  0:4]
        self._gs_cost_plotter           = self._gs[1:3,  4:8]
        self._gs_gt_cost_plotter        = self._gs[4:6,  4:8]
        self._gs_algthm_output          = self._gs[3:9,  0:4]
        if config['image_on']:
            self._gs_traj_visualizer    = self._gs[9:16, 0:4]
            self._gs_image_visualizer   = self._gs[9:16, 4:8]
        else:
            self._gs_traj_visualizer    = self._gs[9:16, 0:8]

        # Create GUI components.
        self._action_panel = ActionPanel(self._fig, self._gs_action_panel, 1, 4, actions_arr)
        self._action_output = Textbox(self._fig, self._gs_action_output, border_on=True)
        self._status_output = Textbox(self._fig, self._gs_status_output, border_on=False)
        self._algthm_output = Textbox(self._fig, self._gs_algthm_output,
                max_display_size=config['algthm_output_max_display_size'],
                log_filename=self._log_filename,
                fontsize=config['algthm_output_fontsize'],
                font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig, self._gs_cost_plotter,
                color='blue', label='mean cost')
        self._gt_cost_plotter = MeanPlotter(self._fig, self._gs_gt_cost_plotter,
                color='red', label='ground truth cost')
        self._traj_visualizer = Plotter3D(self._fig, self._gs_traj_visualizer,
                num_plots=self._hyperparams['conditions'])
        if config['image_on']:
            self._image_visualizer = ImageVisualizer(self._fig,
                    self._gs_image_visualizer, cropsize=config['image_size'],
                    rostopic=config['image_topic'], show_overlay_buttons=True)

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        if config['initial_mode'] == 'run':
            self.run_mode()
        else:
            self.wait_mode()

        # Setup 3D Trajectory Visualizer plot titles and legends
        for m in range(self._hyperparams['conditions']):
            self._traj_visualizer.set_title(m, 'Condition %d' % (m))
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='green', label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='blue', label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None', marker='x',
                color=(0.5, 0, 0), label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='red', label='LG Controller Distributions')

        self._fig.canvas.draw()

        # Display calculating thread
        def display_calculating(delay, run_event):
            while True:
                if not run_event.is_set():
                    run_event.wait()
                if run_event.is_set():
                    self.set_status_text('Calculating.')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating..')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating...')
                    time.sleep(delay)

        self._calculating_run = threading.Event()
        self._calculating_thread = threading.Thread(target=display_calculating,
                args=(1, self._calculating_run))
        self._calculating_thread.daemon = True
        self._calculating_thread.start()
Пример #6
0
class GPSTrainingGUI(object):

    def __init__(self, hyperparams):
        self._hyperparams = hyperparams
        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = None

        # GPS Training Status.
        self.mode = config['initial_mode']  # Modes: run, wait, end, request, process.
        self.request = None                 # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',

            'stop': 'red',
            'reset': 'yellow',
            'go': 'green',
            'fail': 'magenta',
        }
        self._first_update = True

        # Actions.
        actions_arr = [
            Action('stop',  'stop',  self.request_stop,  axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('go',    'go',    self.request_go,    axis_pos=2),
            Action('fail',  'fail',  self.request_fail,  axis_pos=3),
        ]

        # Setup figure.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        for key in plt.rcParams:
            if key.startswith('keymap.'):
                plt.rcParams[key] = ''

        self._fig = plt.figure(figsize=config['figsize'])
        self._fig.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99,
                wspace=0, hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(16, 8)
        self._gs_action_panel           = self._gs[0:1,  0:8]
        self._gs_action_output          = self._gs[1:2,  0:4]
        self._gs_status_output          = self._gs[2:3,  0:4]
        self._gs_cost_plotter           = self._gs[1:3,  4:8]
        self._gs_gt_cost_plotter        = self._gs[4:6,  4:8]
        self._gs_algthm_output          = self._gs[3:9,  0:4]
        if config['image_on']:
            self._gs_traj_visualizer    = self._gs[9:16, 0:4]
            self._gs_image_visualizer   = self._gs[9:16, 4:8]
        else:
            self._gs_traj_visualizer    = self._gs[9:16, 0:8]

        # Create GUI components.
        self._action_panel = ActionPanel(self._fig, self._gs_action_panel, 1, 4, actions_arr)
        self._action_output = Textbox(self._fig, self._gs_action_output, border_on=True)
        self._status_output = Textbox(self._fig, self._gs_status_output, border_on=False)
        self._algthm_output = Textbox(self._fig, self._gs_algthm_output,
                max_display_size=config['algthm_output_max_display_size'],
                log_filename=self._log_filename,
                fontsize=config['algthm_output_fontsize'],
                font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig, self._gs_cost_plotter,
                color='blue', label='mean cost')
        self._gt_cost_plotter = MeanPlotter(self._fig, self._gs_gt_cost_plotter,
                color='red', label='ground truth cost')
        self._traj_visualizer = Plotter3D(self._fig, self._gs_traj_visualizer,
                num_plots=self._hyperparams['conditions'])
        if config['image_on']:
            self._image_visualizer = ImageVisualizer(self._fig,
                    self._gs_image_visualizer, cropsize=config['image_size'],
                    rostopic=config['image_topic'], show_overlay_buttons=True)

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        if config['initial_mode'] == 'run':
            self.run_mode()
        else:
            self.wait_mode()

        # Setup 3D Trajectory Visualizer plot titles and legends
        for m in range(self._hyperparams['conditions']):
            self._traj_visualizer.set_title(m, 'Condition %d' % (m))
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='green', label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='blue', label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None', marker='x',
                color=(0.5, 0, 0), label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='red', label='LG Controller Distributions')

        self._fig.canvas.draw()

        # Display calculating thread
        def display_calculating(delay, run_event):
            while True:
                if not run_event.is_set():
                    run_event.wait()
                if run_event.is_set():
                    self.set_status_text('Calculating.')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating..')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating...')
                    time.sleep(delay)

        self._calculating_run = threading.Event()
        self._calculating_thread = threading.Thread(target=display_calculating,
                args=(1, self._calculating_run))
        self._calculating_thread.daemon = True
        self._calculating_thread.start()

    # GPS Training functions
    def request_stop(self, event=None):
        self.request_mode('stop')

    def request_reset(self, event=None):
        self.request_mode('reset')

    def request_go(self, event=None):
        self.request_mode('go')

    def request_fail(self, event=None):
        self.request_mode('fail')

    def request_mode(self, request):
        """
        Sets the request mode (stop, reset, go, fail). The request is read by
        gps_main before sampling, and the appropriate action is taken.
        """
        self.mode = 'request'
        self.request = request
        self.set_action_text(self.request + ' requested')
        self.set_action_bgcolor(self._colors[self.request], alpha=0.2)

    def process_mode(self):
        """
        Completes the current request, after it is first read by gps_main.
        Displays visual confirmation that the request was processed,
        displays any error messages, and then switches into mode 'run' or 'wait'.
        """
        self.mode = 'process'
        self.set_action_text(self.request + ' processed')
        self.set_action_bgcolor(self._colors[self.request], alpha=1.0)
        if self.err_msg:
            self.set_action_text(self.request + ' processed' + '\nERROR: ' +
                                 self.err_msg)
            self.err_msg = None
            time.sleep(1.0)
        else:
            time.sleep(0.5)
        if self.request in ('stop', 'reset', 'fail'):
            self.wait_mode()
        elif self.request == 'go':
            self.run_mode()
        self.request = None

    def wait_mode(self):
        self.mode = 'wait'
        self.set_action_text('waiting')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def run_mode(self):
        self.mode = 'run'
        self.set_action_text('running')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def end_mode(self):
        self.mode = 'end'
        self.set_action_text('ended')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def estop(self, event=None):
        self.set_action_text('estop: NOT IMPLEMENTED')

    # GUI functions
    def set_action_text(self, text):
        self._action_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def set_action_bgcolor(self, color, alpha=1.0):
        self._action_output.set_bgcolor(color, alpha)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def set_status_text(self, text):
        self._status_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def set_output_text(self, text):
        self._algthm_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def append_output_text(self, text):
        self._algthm_output.append_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels
        self._gt_cost_plotter.draw_ticklabels()

    def start_display_calculating(self):
        self._calculating_run.set()

    def stop_display_calculating(self):
        self._calculating_run.clear()

    def set_image_overlays(self, condition):
        """
        Sets up the image visualizer with what images to overlay if
        "overlay_initial_image" or "overlay_target_image" is pressed.
        """
        if not config['image_on'] or not self._target_filename:
            return
        initial_image = load_data_from_npz(self._target_filename,
                config['image_overlay_actuator'], str(condition),
                'initial', 'image', default=None)
        target_image  = load_data_from_npz(self._target_filename,
            config['image_overlay_actuator'], str(condition),
                'target',  'image', default=None)
        self._image_visualizer.set_initial_image(initial_image,
                alpha=config['image_overlay_alpha'])
        self._image_visualizer.set_target_image(target_image,
                alpha=config['image_overlay_alpha'])

    # Iteration update functions
    def update(self, itr, algorithm, agent, traj_sample_lists, pol_sample_lists):
        """
        After each iteration, update the iteration data output, the cost plot,
        and the 3D trajectory visualizations (if end effector points exist).
        """
        if self._first_update:
            policy_titles = pol_sample_lists != None
            self._output_column_titles(algorithm, policy_titles)
            self._first_update = False
        costs = [np.mean(np.sum(algorithm.prev[m].cs, axis=1)) for m in range(algorithm.M)]
        if algorithm._hyperparams['ioc']:
            gt_costs = [np.mean(np.sum(algorithm.prev[m].cgt, axis=1)) for m in range(algorithm.M)]
            self._update_iteration_data(itr, algorithm, gt_costs, pol_sample_lists)
            self._gt_cost_plotter.update(gt_costs, t=itr)
        else:
            self._update_iteration_data(itr, algorithm, costs, pol_sample_lists)
        self._cost_plotter.update(costs, t=itr)
        if END_EFFECTOR_POINTS in agent.x_data_types:
            self._update_trajectory_visualizations(algorithm, agent,
                    traj_sample_lists, pol_sample_lists)

        self._fig.canvas.draw()
        self._fig.canvas.flush_events() # Fixes bug in Qt4Agg backend
        # import pdb; pdb.set_trace()

    def _output_column_titles(self, algorithm, policy_titles=False):
        """
        Setup iteration data column titles: iteration, average cost, and for
        each condition the mean cost over samples, step size, linear Guassian
        controller entropies, and initial/final KL divergences for BADMM.
        """
        self.set_output_text(self._hyperparams['experiment_name'])
        if policy_titles:
            condition_titles = '%3s | %8s %12s' % ('', '', '')
            itr_data_fields  = '%3s | %8s %12s' % ('itr', 'avg_cost', 'avg_pol_cost')
        else:
            condition_titles = '%3s | %8s' % ('', '')
            itr_data_fields  = '%3s | %8s' % ('itr', 'avg_cost')
        for m in range(algorithm.M):
            condition_titles += ' | %8s %9s %-7d' % ('', 'condition', m)
            itr_data_fields  += ' | %8s %8s %8s' % ('  cost  ', '  step  ', 'entropy ')
            if algorithm.prev[0].pol_info is not None:
                condition_titles += ' %8s %8s' % ('', '')
                itr_data_fields  += ' %8s %8s' % ('kl_div_i', 'kl_div_f')
            if algorithm._hyperparams['ioc'] and not algorithm._hyperparams['learning_from_prior']:
                condition_titles += ' %8s' % ('')
                itr_data_fields  += ' %8s' % ('kl_div')
            if algorithm._hyperparams['learning_from_prior']:
                condition_titles += ' %8s' % ('')
                itr_data_fields  += ' %8s' % ('mean_dist')
            if policy_titles:
                condition_titles += ' %8s %8s %8s' % ('', '', '')
                itr_data_fields  += ' %8s %8s %8s' % ('pol_cost', 'kl_div_i', 'kl_div_f')
        self.append_output_text(condition_titles)
        self.append_output_text(itr_data_fields)

    def _update_iteration_data(self, itr, algorithm, costs, pol_sample_lists):
        """
        Update iteration data information: iteration, average cost, and for
        each condition the mean cost over samples, step size, linear Guassian
        controller entropies, and initial/final KL divergences for BADMM.
        """
        avg_cost = np.mean(costs)
        if pol_sample_lists is not None:
            pol_costs = [np.mean([np.sum(algorithm.cost[m].eval(s)[0]) \
                    for s in pol_sample_lists[m]]) \
                    for m in range(algorithm.M)]
            itr_data = '%3d | %8.2f %12.2f' % (itr, avg_cost, np.mean(pol_costs))
        else:
            itr_data = '%3d | %8.2f' % (itr, avg_cost)
        for m in range(algorithm.M):
            cost = costs[m]
            step = algorithm.prev[m].step_mult * algorithm.base_kl_step
            entropy = 2*np.sum(np.log(np.diagonal(algorithm.prev[m].traj_distr.chol_pol_covar,
                    axis1=1, axis2=2)))
            itr_data += ' | %8.2f %8.2f %8.2f' % (cost, step, entropy)
            if algorithm.prev[0].pol_info is not None:
                kl_div_i = algorithm.prev[m].pol_info.prev_kl[0]
                kl_div_f = algorithm.prev[m].pol_info.prev_kl[-1]
                itr_data += ' %8.2f %8.2f' % (kl_div_i, kl_div_f)
            if algorithm._hyperparams['ioc'] and not algorithm._hyperparams['learning_from_prior']:
                itr_data += ' %8.2f' % (algorithm.kl_div[itr][m])
            if algorithm._hyperparams['learning_from_prior']:
                itr_data += ' %8.2f' % (algorithm.dists_to_target[itr][m])
            if pol_sample_lists is not None:
                kl_div_i = algorithm.cur[m].pol_info.init_kl.mean()
                kl_div_f = algorithm.cur[m].pol_info.prev_kl.mean()
                itr_data += ' %8.2f %8.2f %8.2f' % (pol_costs[m], kl_div_i, kl_div_f)
        self.append_output_text(itr_data)

    def _update_trajectory_visualizations(self, algorithm, agent,
                traj_sample_lists, pol_sample_lists):
        """
        Update 3D trajectory visualizations information: the trajectory samples,
        policy samples, and linear Gaussian controller means and covariances.
        """
        xlim, ylim, zlim = self._calculate_3d_axis_limits(traj_sample_lists, pol_sample_lists)
        for m in range(algorithm.M):
            self._traj_visualizer.clear(m)
            self._traj_visualizer.set_lim(i=m, xlim=xlim, ylim=ylim, zlim=zlim)
            self._update_samples_plots(traj_sample_lists, m, 'green', 'Trajectory Samples')
            self._update_linear_gaussian_controller_plots(algorithm, agent, m)
            if pol_sample_lists:
                self._update_samples_plots(pol_sample_lists,  m, 'blue',  'Policy Samples')
        self._traj_visualizer.draw()    # this must be called explicitly

    def _calculate_3d_axis_limits(self, traj_sample_lists, pol_sample_lists):
        """
        Calculate the 3D axis limits shared between trajectory plots,
        based on the minimum and maximum xyz values across all samples.
        """
        all_eept = np.empty((0, 3))
        sample_lists = traj_sample_lists
        if pol_sample_lists:
            sample_lists += traj_sample_lists
        for sample_list in sample_lists:
            for sample in sample_list.get_samples():
                ee_pt = sample.get(END_EFFECTOR_POINTS)
                for i in range(ee_pt.shape[1]/3):
                    ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                    all_eept = np.r_[all_eept, ee_pt_i]
        min_xyz = np.amin(all_eept, axis=0)
        max_xyz = np.amax(all_eept, axis=0)
        xlim = buffered_axis_limits(min_xyz[0], max_xyz[0], buffer_factor=1.25)
        ylim = buffered_axis_limits(min_xyz[1], max_xyz[1], buffer_factor=1.25)
        zlim = buffered_axis_limits(min_xyz[2], max_xyz[2], buffer_factor=1.25)
        return xlim, ylim, zlim

    def _update_linear_gaussian_controller_plots(self, algorithm, agent, m):
        """
        Update the linear Guassian controller plots with iteration data,
        for the mean and covariances of the end effector points.
        """
        # Calculate mean and covariance for end effector points
        eept_idx = agent.get_idx_x(END_EFFECTOR_POINTS)
        start, end = eept_idx[0], eept_idx[-1]
        mu, sigma = algorithm.traj_opt.forward(algorithm.prev[m].traj_distr, algorithm.prev[m].traj_info)
        mu_eept, sigma_eept = mu[:, start:end+1], sigma[:, start:end+1, start:end+1]

        # Linear Gaussian Controller Distributions (Red)
        for i in range(mu_eept.shape[1]/3):
            mu, sigma = mu_eept[:, 3*i+0:3*i+3], sigma_eept[:, 3*i+0:3*i+3, 3*i+0:3*i+3]
            self._traj_visualizer.plot_3d_gaussian(i=m, mu=mu, sigma=sigma,
                    edges=100, linestyle='-', linewidth=1.0, color='red',
                    alpha=0.15, label='LG Controller Distributions')

        # Linear Gaussian Controller Means (Dark Red)
        for i in range(mu_eept.shape[1]/3):
            mu = mu_eept[:, 3*i+0:3*i+3]
            self._traj_visualizer.plot_3d_points(i=m, points=mu, linestyle='None',
                    marker='x', markersize=5.0, markeredgewidth=1.0,
                    color=(0.5, 0, 0), alpha=1.0, label='LG Controller Means')

    def _update_samples_plots(self, sample_lists, m, color, label):
        """
        Update the samples plots with iteration data, for the trajectory samples
        and the policy samples.
        """
        samples = sample_lists[m].get_samples()
        for sample in samples:
            ee_pt = sample.get(END_EFFECTOR_POINTS)
            for i in range(ee_pt.shape[1]/3):
                ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                self._traj_visualizer.plot_3d_points(m, ee_pt_i, color=color, label=label)

    def save_figure(self, filename):
        self._fig.savefig(filename)
Пример #7
0
    def __init__(self, hyperparams, agent):
        self._agent = agent

        self._hyperparams = hyperparams
        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = None

        # GPS Training Status.
        self.mode = config['initial_mode']  # Modes: run, wait, end, request, process.
        self.request = None                 # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',
        }

        self._actuator_types = config['actuator_types']
        self._actuator_names = config['actuator_names']
        self._first_update = True
        self._actuator_number = 0
        self._actuator_type = self._actuator_types[self._actuator_number]
        self._initial_position = ('unknown', 'unknown', 'unknown')
        self._target_position = ('unknown', 'unknown', 'unknown')

        # Actions.
        actions_arr = [
            Action('stop', 'stop', self.request_stop, axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('GCM go', 'go', self.request_go, axis_pos=2),
            Action('transfer learning', 'transfer_learning', self.request_tl, axis_pos=3),

            Action('set initial state', 'initstate', self.request_init_state, axis_pos=4),
            Action('set goal state', 'goalstate', self.request_goal_state, axis_pos=5),
            Action('test transfer learning', 'test_tl', self.request_test_tl, axis_pos=6),
            Action('generalize', 'generalize', self.request_generalize, axis_pos=7),

            Action('mti', 'move_to_initial', self.move_to_initial, axis_pos=8),
            Action('mtt', 'move_to_target', self.move_to_target, axis_pos=9),
            Action('rc', 'relax_controller', self.relax_controller, axis_pos=10),
        ]

        # Setup figure.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        for key in plt.rcParams:
            if key.startswith('keymap.'):
                plt.rcParams[key] = ''

        self._fig = plt.figure(figsize=config['figsize'])
        self._fig.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99,
                wspace=0, hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(18, 8)
        self._gs_action_panel           = self._gs[0:4,  0:8]
        self._gs_action_output          = self._gs[4:5,  0:4]
        self._gs_status_output          = self._gs[5:6,  0:4]
        self._gs_cost_plotter           = self._gs[4:10,  4:8]
        self._gs_algthm_output          = self._gs[6:10,  0:4]
        self._gs_traj_visualizer    = self._gs[10:18, 0:8]

        # Create GUI components.
        self._action_panel = ActionPanel(self._fig, self._gs_action_panel, 3, 4, actions_arr)
        self._action_output = Textbox(self._fig, self._gs_action_output, border_on=True)
        self._status_output = Textbox(self._fig, self._gs_status_output, border_on=False)
        self._algthm_output = Textbox(self._fig, self._gs_algthm_output,
                max_display_size=config['algthm_output_max_display_size'],
                log_filename=self._log_filename,
                fontsize=config['algthm_output_fontsize'],
                font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig, self._gs_cost_plotter,
                color='blue', label='mean cost')
        self._traj_visualizer = Plotter3D(self._fig, self._gs_traj_visualizer,
                num_plots=self._hyperparams['conditions'])

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        if config['initial_mode'] == 'run':
            self.run_mode()
        else:
            self.wait_mode()

        # Setup 3D Trajectory Visualizer plot titles and legends
        for m in range(self._hyperparams['conditions']):
            self._traj_visualizer.set_title(m, 'Condition %d' % (m))
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='green', label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='blue', label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None', marker='x',
                color=(0.5, 0, 0), label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='red', label='LG Controller Distributions')

        self._fig.canvas.draw()

        # Display calculating thread
        def display_calculating(delay, run_event):
            while True:
                if not run_event.is_set():
                    run_event.wait()
                if run_event.is_set():
                    self.set_status_text('Calculating.')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating..')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating...')
                    time.sleep(delay)

        self._calculating_run = threading.Event()
        self._calculating_thread = threading.Thread(target=display_calculating,
                args=(1, self._calculating_run))
        self._calculating_thread.daemon = True
        self._calculating_thread.start()
Пример #8
0
class TransferLearningGUI(object):

    def __init__(self, hyperparams, agent):
        self._agent = agent

        self._hyperparams = hyperparams
        self._log_filename = self._hyperparams['log_filename']
        if 'target_filename' in self._hyperparams:
            self._target_filename = self._hyperparams['target_filename']
        else:
            self._target_filename = None

        # GPS Training Status.
        self.mode = config['initial_mode']  # Modes: run, wait, end, request, process.
        self.request = None                 # Requests: stop, reset, go, fail, None.
        self.err_msg = None
        self._colors = {
            'run': 'cyan',
            'wait': 'orange',
            'end': 'red',
        }

        self._actuator_types = config['actuator_types']
        self._actuator_names = config['actuator_names']
        self._first_update = True
        self._actuator_number = 0
        self._actuator_type = self._actuator_types[self._actuator_number]
        self._initial_position = ('unknown', 'unknown', 'unknown')
        self._target_position = ('unknown', 'unknown', 'unknown')

        # Actions.
        actions_arr = [
            Action('stop', 'stop', self.request_stop, axis_pos=0),
            Action('reset', 'reset', self.request_reset, axis_pos=1),
            Action('GCM go', 'go', self.request_go, axis_pos=2),
            Action('transfer learning', 'transfer_learning', self.request_tl, axis_pos=3),

            Action('set initial state', 'initstate', self.request_init_state, axis_pos=4),
            Action('set goal state', 'goalstate', self.request_goal_state, axis_pos=5),
            Action('test transfer learning', 'test_tl', self.request_test_tl, axis_pos=6),
            Action('generalize', 'generalize', self.request_generalize, axis_pos=7),

            Action('mti', 'move_to_initial', self.move_to_initial, axis_pos=8),
            Action('mtt', 'move_to_target', self.move_to_target, axis_pos=9),
            Action('rc', 'relax_controller', self.relax_controller, axis_pos=10),
        ]

        # Setup figure.
        plt.ion()
        plt.rcParams['toolbar'] = 'None'
        for key in plt.rcParams:
            if key.startswith('keymap.'):
                plt.rcParams[key] = ''

        self._fig = plt.figure(figsize=config['figsize'])
        self._fig.subplots_adjust(left=0.01, bottom=0.01, right=0.99, top=0.99,
                wspace=0, hspace=0)

        # Assign GUI component locations.
        self._gs = gridspec.GridSpec(18, 8)
        self._gs_action_panel           = self._gs[0:4,  0:8]
        self._gs_action_output          = self._gs[4:5,  0:4]
        self._gs_status_output          = self._gs[5:6,  0:4]
        self._gs_cost_plotter           = self._gs[4:10,  4:8]
        self._gs_algthm_output          = self._gs[6:10,  0:4]
        self._gs_traj_visualizer    = self._gs[10:18, 0:8]

        # Create GUI components.
        self._action_panel = ActionPanel(self._fig, self._gs_action_panel, 3, 4, actions_arr)
        self._action_output = Textbox(self._fig, self._gs_action_output, border_on=True)
        self._status_output = Textbox(self._fig, self._gs_status_output, border_on=False)
        self._algthm_output = Textbox(self._fig, self._gs_algthm_output,
                max_display_size=config['algthm_output_max_display_size'],
                log_filename=self._log_filename,
                fontsize=config['algthm_output_fontsize'],
                font_family='monospace')
        self._cost_plotter = MeanPlotter(self._fig, self._gs_cost_plotter,
                color='blue', label='mean cost')
        self._traj_visualizer = Plotter3D(self._fig, self._gs_traj_visualizer,
                num_plots=self._hyperparams['conditions'])

        # Setup GUI components.
        self._algthm_output.log_text('\n')
        self.set_output_text(self._hyperparams['info'])
        if config['initial_mode'] == 'run':
            self.run_mode()
        else:
            self.wait_mode()

        # Setup 3D Trajectory Visualizer plot titles and legends
        for m in range(self._hyperparams['conditions']):
            self._traj_visualizer.set_title(m, 'Condition %d' % (m))
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='green', label='Trajectory Samples')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='blue', label='Policy Samples')
        self._traj_visualizer.add_legend(linestyle='None', marker='x',
                color=(0.5, 0, 0), label='LG Controller Means')
        self._traj_visualizer.add_legend(linestyle='-', marker='None',
                color='red', label='LG Controller Distributions')

        self._fig.canvas.draw()

        # Display calculating thread
        def display_calculating(delay, run_event):
            while True:
                if not run_event.is_set():
                    run_event.wait()
                if run_event.is_set():
                    self.set_status_text('Calculating.')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating..')
                    time.sleep(delay)
                if run_event.is_set():
                    self.set_status_text('Calculating...')
                    time.sleep(delay)

        self._calculating_run = threading.Event()
        self._calculating_thread = threading.Thread(target=display_calculating,
                args=(1, self._calculating_run))
        self._calculating_thread.daemon = True
        self._calculating_thread.start()

    # GPS Training functions
    def request_stop(self, event=None):
        self.request_mode('stop')
        self._agent.sample(
            self._agent.policy,
            self._agent.condition, verbose=None,
            save=False, noisy=False,
            use_TfController=True, timeout=0, reset=False)

    def request_reset(self, event=None):
        self.request_mode('reset')
        self._agent.reset(self._agent.condition)

    def request_go(self, event=None):
        self.request_mode('go')

    def request_tl(self, event=None):
        self.request_mode('transfer_learning')

    def request_test_tl(self, event=None):
        self.request_mode('test_tl')

    def request_generalize(self, event=None):
        self.request_mode('generalize')

    def move_to_initial(self, event=None):
        ja = self._initial_position[0]
        self.set_action_status_message('move_to_initial', 'requested')
        self._agent.reset_arm(self._actuator_type, JOINT_SPACE, ja.T)
        self.set_action_status_message('move_to_initial', 'completed',
                message='initial position: %s' % str(ja))

    def move_to_target(self, event=None):
        ja = self._target_position[0]
        self.set_action_status_message('move_to_target', 'requested')
        self._agent.reset_arm(self._actuator_type, JOINT_SPACE, ja.T)
        self.set_action_status_message('move_to_target', 'completed',
                message='target position: %s' % str(ja))

    def relax_controller(self, event=None):
        self.set_action_status_message('relax_controller', 'requested')
        self._agent.relax_arm(self._actuator_type)
        self.set_action_status_message('relax_controller', 'completed',
                message='actuator name: %s' % self._actuator_name)

    def request_goal_state(self, event=None):
        self.request_mode('goalstate')
        sample = self._agent.get_data(arm=self._actuator_type)
        ja = sample.get(JOINT_ANGLES)
        ee_pos = sample.get(END_EFFECTOR_POSITIONS)
        ee_rot = sample.get(END_EFFECTOR_ROTATIONS)
        ee_tgt = np.ndarray.flatten(
            get_ee_points(self._agent._hyperparams['ee_points'], ee_pos, ee_rot).T
        )
        self._agent._hyperparams['ee_points_tgt'] = [ee_tgt]
        self._target_position = (ja, ee_pos, ee_rot)
        self._agent._target_ja = [ja]

    def request_init_state(self, event=None):
        self.request_mode('initstate')
        sample = self._agent.get_data(arm=self._actuator_type)
        ja = sample.get(JOINT_ANGLES)
        ee_pos = sample.get(END_EFFECTOR_POSITIONS)
        ee_rot = sample.get(END_EFFECTOR_ROTATIONS)
        self._initial_position = (ja, ee_pos, ee_rot)
        reset_condition = {
            TRIAL_ARM: {
                'mode': JOINT_SPACE,
                'data': ja[0],
            },
        }
        res_cons = []
        res_cons.append(reset_condition)
        self._agent._initial_ja = [ja]

    def request_mode(self, request):
        """
        Sets the request mode (stop, reset, go, fail). The request is read by
        gps_main before sampling, and the appropriate action is taken.
        """
        self.mode = 'request'
        self.request = request
        self.set_action_text(self.request + ' requested')
        #self.set_action_bgcolor(self._colors[self.request], alpha=0.2)

    def process_mode(self):
        """
        Completes the current request, after it is first read by gps_main.
        Displays visual confirmation that the request was processed,
        displays any error messages, and then switches into mode 'run' or 'wait'.
        """
        self.mode = 'process'
        self.set_action_text(self.request + ' processed')
        self.set_action_bgcolor(self._colors[self.request], alpha=1.0)
        if self.err_msg:
            self.set_action_text(self.request + ' processed' + '\nERROR: ' +
                                 self.err_msg)
            self.err_msg = None
            time.sleep(1.0)
        else:
            time.sleep(0.5)
        if self.request in ('stop', 'reset', 'fail'):
            self.wait_mode()
        elif self.request == 'go':
            self.run_mode()
        self.request = None

    def wait_mode(self):
        self.mode = 'wait'
        self.set_action_text('waiting')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def run_mode(self):
        self.mode = 'run'
        self.set_action_text('running')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def end_mode(self):
        self.mode = 'end'
        self.set_action_text('ended')
        self.set_action_bgcolor(self._colors[self.mode], alpha=1.0)

    def estop(self, event=None):
        self.set_action_text('estop: NOT IMPLEMENTED')

    # GUI functions
    def set_action_text(self, text):
        self._action_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_action_bgcolor(self, color, alpha=1.0):
        self._action_output.set_bgcolor(color, alpha)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_status_text(self, text):
        self._status_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def set_output_text(self, text):
        self._algthm_output.set_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def append_output_text(self, text):
        self._algthm_output.append_text(text)
        self._cost_plotter.draw_ticklabels()    # redraw overflow ticklabels

    def start_display_calculating(self):
        self._calculating_run.set()

    def stop_display_calculating(self):
        self._calculating_run.clear()

    def set_action_status_message(self, action, status, message=None):
        text = action + ': ' + status
        if message:
            text += '\n\n' + message
        self.set_action_text(text)
        if status == 'requested':
            self.set_action_bgcolor('yellow')
        elif status == 'completed':
            self.set_action_bgcolor('green')
        elif status == 'failed':
            self.set_action_bgcolor('red')

    def set_image_overlays(self, condition):
        """
        Sets up the image visualizer with what images to overlay if
        "overlay_initial_image" or "overlay_target_image" is pressed.
        """
        if not config['image_on'] or not self._target_filename:
            return
        initial_image = load_data_from_npz(self._target_filename,
                config['image_overlay_actuator'], str(condition),
                'initial', 'image', default=None)
        target_image  = load_data_from_npz(self._target_filename,
            config['image_overlay_actuator'], str(condition),
                'target',  'image', default=None)
        self._image_visualizer.set_initial_image(initial_image,
                alpha=config['image_overlay_alpha'])
        self._image_visualizer.set_target_image(target_image,
                alpha=config['image_overlay_alpha'])

    # Iteration update functions
    def update(self, itr, algorithm, agent, traj_sample_lists, pol_sample_lists):
        """
        After each iteration, update the iteration data output, the cost plot,
        and the 3D trajectory visualizations (if end effector points exist).
        """
        if self._first_update:
            self._output_column_titles(algorithm)
            self._first_update = False

        costs = [np.mean(np.sum(algorithm.prev[m].cs, axis=1)) for m in range(algorithm.M)]
        self._update_iteration_data(itr, algorithm, costs, pol_sample_lists)
        self._cost_plotter.update(costs, t=itr)
        if END_EFFECTOR_POINTS in agent.x_data_types:
            self._update_trajectory_visualizations(algorithm, agent,
                    traj_sample_lists, pol_sample_lists)

        self._fig.canvas.draw()
        self._fig.canvas.flush_events() # Fixes bug in Qt4Agg backend

    def _output_column_titles(self, algorithm, policy_titles=False):
        """
        Setup iteration data column titles: iteration, average cost, and for
        each condition the mean cost over samples, step size, linear Guassian
        controller entropies, and initial/final KL divergences for BADMM.
        """
        self.set_output_text(self._hyperparams['experiment_name'])
        condition_titles = '%3s | %8s' % ('', '')
        itr_data_fields  = '%3s | %8s' % ('itr', 'avg_cost')
        for m in range(algorithm.M):
            condition_titles += ' | %8s %9s %-7d' % ('', 'condition', m)
            itr_data_fields  += ' | %8s %8s %8s' % ('  cost  ', '  step  ', 'entropy ')
        self.append_output_text(condition_titles)
        self.append_output_text(itr_data_fields)

    def _update_iteration_data(self, itr, algorithm, costs, pol_sample_lists):
        """
        Update iteration data information: iteration, average cost, and for
        each condition the mean cost over samples, step size, linear Guassian
        controller entropies, and initial/final KL divergences for BADMM.
        """
        avg_cost = np.mean(costs)
        if pol_sample_lists is not None:
            test_idx = algorithm._hyperparams['test_conditions']
            print("tet_idx: ", test_idx)
            # pol_sample_lists is a list of singletons
            samples = [sl[0] for sl in pol_sample_lists]
            print("samples len: ", len(samples))
            print("algorithm.costs: ", len(algorithm.cost))
            print("costs: ", algorithm.cost[-1].eval(samples[0]))
            #print("algorithm.cost.eval: ", len(algorithm.cost[-1].eval))
            pol_costs = [np.sum(algorithm.cost[idx].eval(s)[0])
                    for s, idx in zip(samples, test_idx)]
            itr_data = '%3d | %8.2f %12.2f' % (itr, avg_cost, np.mean(pol_costs))
        else:
            itr_data = '%3d | %8.2f' % (itr, avg_cost)
        for m in range(algorithm.M):
            cost = costs[m]
            step = algorithm.prev[m].step_mult * algorithm.base_kl_step
            entropy = 2*np.sum(np.log(np.diagonal(algorithm.prev[m].traj_distr.chol_pol_covar,
                    axis1=1, axis2=2)))
            itr_data += ' | %8.2f %8.2f %8.2f' % (cost, step, entropy)
        self.append_output_text(itr_data)

    def _update_trajectory_visualizations(self, algorithm, agent,
                traj_sample_lists, pol_sample_lists):
        """
        Update 3D trajectory visualizations information: the trajectory samples,
        policy samples, and linear Gaussian controller means and covariances.
        """
        xlim, ylim, zlim = self._calculate_3d_axis_limits(traj_sample_lists, pol_sample_lists)
        for m in range(algorithm.M):
            self._traj_visualizer.clear(m)
            self._traj_visualizer.set_lim(i=m, xlim=xlim, ylim=ylim, zlim=zlim)
            self._update_linear_gaussian_controller_plots(algorithm, agent, m)
            self._update_samples_plots(traj_sample_lists, m, 'green', 'Trajectory Samples')
            if pol_sample_lists:
                self._update_samples_plots(pol_sample_lists,  m, 'blue',  'Policy Samples')
        self._traj_visualizer.draw()    # this must be called explicitly

    def _calculate_3d_axis_limits(self, traj_sample_lists, pol_sample_lists):
        """
        Calculate the 3D axis limits shared between trajectory plots,
        based on the minimum and maximum xyz values across all samples.
        """
        all_eept = np.empty((0, 3))
        sample_lists = traj_sample_lists
        if pol_sample_lists:
            sample_lists += traj_sample_lists
        for sample_list in sample_lists:
            for sample in sample_list.get_samples():
                ee_pt = sample.get(END_EFFECTOR_POINTS)
                for i in range(ee_pt.shape[1]/3):
                    ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                    all_eept = np.r_[all_eept, ee_pt_i]
        min_xyz = np.amin(all_eept, axis=0)
        max_xyz = np.amax(all_eept, axis=0)
        xlim = buffered_axis_limits(min_xyz[0], max_xyz[0], buffer_factor=1.25)
        ylim = buffered_axis_limits(min_xyz[1], max_xyz[1], buffer_factor=1.25)
        zlim = buffered_axis_limits(min_xyz[2], max_xyz[2], buffer_factor=1.25)
        return xlim, ylim, zlim

    def _update_linear_gaussian_controller_plots(self, algorithm, agent, m):
        """
        Update the linear Guassian controller plots with iteration data,
        for the mean and covariances of the end effector points.
        """
        # Calculate mean and covariance for end effector points
        eept_idx = agent.get_idx_x(END_EFFECTOR_POINTS)
        start, end = eept_idx[0], eept_idx[-1]
        mu, sigma = algorithm.forward(algorithm.prev[m].traj_distr, algorithm.prev[m].traj_info)
        mu_eept, sigma_eept = mu[:, start:end+1], sigma[:, start:end+1, start:end+1]

        # Linear Gaussian Controller Distributions (Red)
        for i in range(mu_eept.shape[1]/3):
            mu, sigma = mu_eept[:, 3*i+0:3*i+3], sigma_eept[:, 3*i+0:3*i+3, 3*i+0:3*i+3]
            self._traj_visualizer.plot_3d_gaussian(i=m, mu=mu, sigma=sigma,
                    edges=100, linestyle='-', linewidth=1.0, color='red',
                    alpha=0.15, label='LG Controller Distributions')

        # Linear Gaussian Controller Means (Dark Red)
        for i in range(mu_eept.shape[1]/3):
            mu = mu_eept[:, 3*i+0:3*i+3]
            self._traj_visualizer.plot_3d_points(i=m, points=mu, linestyle='None',
                    marker='x', markersize=5.0, markeredgewidth=1.0,
                    color=(0.5, 0, 0), alpha=1.0, label='LG Controller Means')

    def _update_samples_plots(self, sample_lists, m, color, label):
        """
        Update the samples plots with iteration data, for the trajectory samples
        and the policy samples.
        """
        samples = sample_lists[m].get_samples()
        for sample in samples:
            ee_pt = sample.get(END_EFFECTOR_POINTS)
            for i in range(ee_pt.shape[1]/3):
                ee_pt_i = ee_pt[:, 3*i+0:3*i+3]
                self._traj_visualizer.plot_3d_points(m, ee_pt_i, color=color, label=label)

    def save_figure(self, filename):
        self._fig.savefig(filename)
realtime_plotter = RealtimePlotter(fig, gs[3],
        labels=['i', 'j', 'i+j', 'i-j', 'mean'],
        alphas=[0.15, 0.15, 0.15, 0.15, 1.0])
run_demo(demo_realtime_plotter)

# Mean Plotter
def demo_mean_plotter():
    i, j = 0, 0
    while True:
        i += random.randint(-10, 10)
        j += random.randint(-10, 10)
        data = [i, j, i + j, i - j]
        mean_plotter.update(data)
        time.sleep(1)

mean_plotter = MeanPlotter(fig, gs[4])
run_demo(demo_mean_plotter)

# Plotter 3D
def demo_plotter_3d():
    xyzs = np.zeros((3, 1))
    while True:
        plotter_3d.clear_all()
        xyz = np.random.randint(-10, 10, size=3).reshape((3,1))
        xyzs = np.append(xyzs, xyz, axis=1)
        xs, ys, zs = xyzs
        plotter_3d.plot(0, xs, ys, zs)
        plotter_3d.draw()  # this must be called explicitly
        time.sleep(1)

plotter_3d = Plotter3D(fig, gs[5], num_plots=1, rows=1, cols=1)