def compute_raim_position(gps_week, gps_sow, prns, prns_pos, pranges, bcestore): if len(prns) == 0 or len(prns_pos) == 0: return np.array([0, 0, 0]) t = gpstk.GPSWeekSecond(gps_week, gps_sow).toCommonTime() prnList = [gpstk.SatID(int(i[3:])) for i in prns] satVector = gpstk.seqToVector(list(prnList), outtype='vector_SatID') rangeVector = gpstk.seqToVector([float(i) for i in pranges]) noTropModel = gpstk.ZeroTropModel() raimSolver = gpstk.PRSolution2() raimSolver.RAIMCompute(t, satVector, rangeVector, bcestore, noTropModel) r = np.array([ raimSolver.Solution[0], raimSolver.Solution[1], raimSolver.Solution[2] ]) return r
def main(): parser = argparse.ArgumentParser() parser.add_argument('rinex3obs_filename') parser.add_argument('rinex3nav_filename') parser.add_argument('-m', '--rinexmet_filename') args = parser.parse_args() # Declaration of objects for storing ephemerides and handling RAIM bcestore = gpstk.GPSEphemerisStore() raimSolver = gpstk.PRSolution2() # Object for void-type tropospheric model (in case no meteorological # RINEX is available) noTropModel = gpstk.ZeroTropModel() # Object for GG-type tropospheric model (Goad and Goodman, 1974) # Default constructor => default values for model ggTropModel = gpstk.GGTropModel() # Pointer to one of the two available tropospheric models. It points # to the void model by default tropModel = noTropModel navHeader, navData = gpstk.readRinex3Nav(args.rinex3nav_filename) for navDataObj in navData: ephem = navDataObj.toEngEphemeris() bcestore.addEphemeris(ephem) # Setting the criteria for looking up ephemeris: bcestore.SearchNear() if args.rinexmet_filename is not None: metHeader, metData = gpstk.readRinexMet(args.rinexmet_filename) tropModel = ggTropModel obsHeader, obsData = gpstk.readRinex3Obs(args.rinex3obs_filename) # The following lines fetch the corresponding indexes for some # observation types we are interested in. Given that old-style # observation types are used, GPS is assumed. try: indexP1 = obsHeader.getObsIndex('P1') except: print 'The observation files has no P1 pseudoranges.' sys.exit() try: indexP2 = obsHeader.getObsIndex('P2') except: indexP2 = -1 for obsObj in obsData: # Find a weather point. Only if a meteorological RINEX file # was provided, the meteorological data linked list "rml" is # neither empty or at its end, and the time of meteorological # records are below observation data epoch. if args.rinexmet_filename is not None: for metObj in metData: if metObj.time >= obsObj.time: break else: metDataDict = metObj.getData() temp = metDataDict[gpstk.RinexMetHeader.TD] pressure = metDataDict[gpstk.RinexMetHeader.PR] humidity = metDataDict[gpstk.RinexMetHeader.HR] ggTropModel.setWeather(temp, pressure, humidity) if obsObj.epochFlag == 0 or obsObj.epochFlag == 1: # Note that we use lists here, but we will need types backed # by C++ std::vectors later. We'll just keep it easy and use # gpstk.seqToVector to convert them. If there was a speed # bottleneck we could use gpstk.cpp.vector_SatID and # gpstk.cpp.vector_double though. prnList = [] rangeList = [] # This part gets the PRN numbers and ionosphere-corrected # pseudoranges for the current epoch. They are correspondly fed # into "prnList" and "rangeList"; "obs" is a public attribute of # Rinex3ObsData to get the map of observations for satID, datumList in obsObj.obs.iteritems(): # The RINEX file may have P1 observations, but the current # satellite may not have them. P1 = 0.0 try: P1 = obsObj.getObs(satID, indexP1).data except gpstk.exceptions.Exception: continue # Ignore this satellite if P1 is not found ionocorr = 0.0 # If there are P2 observations, let's try to apply the # ionospheric corrections if indexP2 >= 0: # The RINEX file may have P2 observations, but the # current satellite may not have them. P2 = 0.0 try: P2 = obsObj.getObs(satID, indexP2).data except gpstk.exceptions.Exception: continue # Ignore this satellite if P1 is not found # list 'vecList' contains RinexDatum, whose public # attribute "data" indeed holds the actual data point ionocorr = 1.0 / (1.0 - gpstk.constants.GAMMA_GPS) * (P1 - P2) # Now, we include the current PRN number in the first part # of "it" iterator into the list holding the satellites. # All satellites in view at this epoch that have P1 or P1+P2 # observations will be included. prnList.append(satID) # The same is done for the list of doubles holding the # corrected ranges rangeList.append(P1 - ionocorr) # WARNING: Please note that so far no further correction # is done on data: Relativistic effects, tropospheric # correction, instrumental delays, etc # The default constructor for PRSolution2 objects (like # "raimSolver") is to set a RMSLimit of 6.5. We change that # here. With this value of 3e6 the solution will have a lot # more dispersion. raimSolver.RMSLimit = 3e6 # In order to compute positions we need the current time, the # vector of visible satellites, the vector of corresponding # ranges, the object containing satellite ephemerides, and a # pointer to the tropospheric model to be applied time = obsObj.time # the RAIMComputer method of PRSolution2 accepts a vector<SatID> as its # 2nd argument, but the list is of RinexSatID, which is a subclass of SatID. # Since C++ containers are NOT covariant, it is neccessary to change the # output to a vector or SatID's rather thta a vector of RinexSatID's. satVector = gpstk.cpp.seqToVector(prnList, outtype='vector_SatID') rangeVector = gpstk.cpp.seqToVector(rangeList) raimSolver.RAIMCompute(time, satVector, rangeVector, bcestore, tropModel) # Note: Given that the default constructor sets public # attribute "Algebraic" to FALSE, a linearized least squares # algorithm will be used to get the solutions. # Also, the default constructor sets ResidualCriterion to true, # so the rejection criterion is based on RMS residual of fit, # instead of RMS distance from an a priori position. if raimSolver.isValid(): # Vector "Solution" holds the coordinates, expressed in # meters in an Earth Centered, Earth Fixed (ECEF) reference # frame. The order is x, y, z (as all ECEF objects) x, y, z = raimSolver.Solution[0], raimSolver.Solution[ 1], raimSolver.Solution[2] print "%12.5f %12.5f %12.5f" % (x, y, z)
navfn = gpstk.getPathData() + '/arlm200z.15n' metfn = gpstk.getPathData() + '/arlm200z.15m' navHeader, navData = gpstk.readRinex3Nav(navfn) ephStore = gpstk.gpstk.Rinex3EphemerisStore() for navDataObj in navData: ephStore.addEphemeris(navDataObj) tropModel = gpstk.GGTropModel() metHeader, metData = gpstk.readRinexMet(metfn) obsHeader, obsData = gpstk.readRinex3Obs(obsfn) indexP1 = obsHeader.getObsIndex('C1W') indexP2 = obsHeader.getObsIndex('C2W') raimSolver = gpstk.PRSolution2() for obsObj in obsData: for metObj in metData: if metObj.time >= obsObj.time: break else: metDataDict = metObj.getData() temp = metDataDict[gpstk.RinexMetHeader.TD] pressure = metDataDict[gpstk.RinexMetHeader.PR] humidity = metDataDict[gpstk.RinexMetHeader.HR] tropModel.setWeather(temp, pressure, humidity) if obsObj.epochFlag == 0 or obsObj.epochFlag == 1: # Note that we use lists here, but we will need types backed # by C++ std::vectors later. We'll just keep it easy and use