def deconv(self, y, z0=None, mode='lbfgsb', maxfun=100, alpha=0., beta=0.01, verbose=10, m=5, edgetapering=1, factor=3, gamma=1e-4): """ deconv implements various deconvolution methods. It expects a blurry image and outputs an estimated blur kernel or a sharp latent image. Currently, the following algorithms are implemented: 'lbfgsb' uses the lbfgsb optimization code to minimize the following constrained regularized problem: |y-Zu|^2 + alpha * |grad(u)|^2 + beta * |u|^2 s.t. u>0 The alpha term promotes smoothness of the solution, while the beta term is an ordinary Thikhonov regularization 'direct' as above but solves the problem directly, i.e. via division in Fourier space instead of an iterative minimization scheme at the cost of the positivity constraint. 'xdirect' as 'direct' but without corrective term which reduces artifacts stemming from the windowing 'gdirect' solves the following problem |grad(y)-grad(Zu)|^2 + alpha * |grad(u)|^2 + beta * |u|^2 This is particularly useful for kernel estimation in the case of blurred natural images featuring many edges. The advantage vs. 'direct' is the suppression of noise in the estimated PSF kernels. 'xdirect' as 'direct' but without corrective term which reduces artifacts stemming from the windowing 'Fast Image Deconvolution using Hyper-Laplacian Priors' by Dilip Krishnan and Rob Fergus, NIPS 2009. It minimizes the following problem |y-Zu|^2 + gamma * |grad(u)|^(2/3) via half-quadratic splitting. See paper for details. ---------------------------------------------------------------------- Usage: Call: Z = OlaGPU(z, sw, mode, winaux) u = Z.deconv(y) Input: y blurry image Ouput: u either image or PSF sized object """ from numpy import array if not all(array(y.shape) == self.sy): raise IOError('Sizes incompatible. Expected blurred image!') # Potential data transfer to GPU if y.__class__ == cua.GPUArray: y_gpu = 1. * y else: y_gpu = cua.to_gpu(y.astype(np.float32)) # -------------------------------------------------------------------- if mode == 'lbfgsb': from scipy.optimize import fmin_l_bfgs_b self.res_gpu = cua.empty_like(y_gpu) if self.__id__ == 'X': sz = ((int(np.prod(self.winaux.csf)), int(self.sz[0]), int(self.sz[1]))) elif self.__id__ == 'F': sz = self.sz lf = np.prod(sz) if z0 == None: z0_gpu = self.cnvtp(y_gpu) z0 = z0_gpu.get() z0 = z0.flatten() #z0 = np.zeros(self.sf) # initialisation with flat kernels #z0[self.sf[0]/2,self.sf[1]/2] = 1. #z0 = np.tile(z0, [np.prod(self.csf),1,1]) #z0 = z0.flatten() else: z0 = z0.flatten() lb = 0. # lower bound ub = np.infty # upper bound zhat = fmin_l_bfgs_b(func = self.cnvinv_objfun, x0 = z0, \ fprime = self.cnvinv_gradfun,\ args = [sz, y_gpu, alpha, beta],\ factr = 10., pgtol = 10e-15, \ maxfun = maxfun, bounds = [(lb, ub)] * lf,\ m = m, iprint = verbose) return np.reshape(zhat[0], sz), zhat[1], zhat[2] # -------------------------------------------------------------------- elif mode == 'gdirect': # Use this method only for estimating the PSF if self.__id__ != 'X': raise Exception('Use direct mode for image estimation!') # Compute Laplacian if alpha > 0.: gx_gpu = gputools.pad_cpu2gpu(np.array([[-1, 1], [-1, 1], [-1, 1]]), self.sfft_gpu, dtype='complex') gy_gpu = gputools.pad_cpu2gpu(np.array([[-1, -1, -1], [1, 1, 1]]), self.sfft_gpu, dtype='complex') self.plan.execute(gx_gpu) self.plan.execute(gy_gpu) L_gpu = gx_gpu * gx_gpu.conj() + gy_gpu * gy_gpu.conj() else: L_gpu = cua.zeros(self.fft_gpu.shape, np.complex64) if edgetapering == 1: gputools.edgetaper_gpu(y_gpu, 2 * self.sf, 'barthann') # Transfer to GPU if self.x.__class__ == cua.GPUArray: x_gpu = self.x else: x_gpu = cua.to_gpu(self.x) # Compute gradient images xx_gpu, xy_gpu = gputools.gradient_gpu(x_gpu) yx_gpu, yy_gpu = gputools.gradient_gpu(y_gpu) # Chop and pad business if self.mode == 'valid': yx_gpu = gputools.chop_pad_GPU(yx_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, self.sf - 1, 'complex') yy_gpu = gputools.chop_pad_GPU(yy_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, self.sf - 1, 'complex') elif self.mode == 'same': yx_gpu = gputools.chop_pad_GPU(yx_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, np.floor(self.sf / 2), 'complex') yy_gpu = gputools.chop_pad_GPU(yy_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, np.floor(self.sf / 2), 'complex') else: raise NotImplementedError('Not a valid mode!') xx_gpu = gputools.chop_pad_GPU(xx_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, dtype='complex') xy_gpu = gputools.chop_pad_GPU(xy_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, dtype='complex') # Here each patch should be windowed to reduce ringing artifacts, # however since we are working in the gradient domain, the effect # is negligible # ws_gpu = gputools.pad_stack_GPU(self.winaux.ws_gpu, # self.sfft_gpu, self.sf-1, # dtype='complex') # xx_gpu = ws_gpu * xx_gpu # xy_gpu = ws_gpu * xy_gpu # yx_gpu = ws_gpu * yx_gpu # yy_gpu = ws_gpu * yy_gpu # Compute Fourier transform self.fft(yx_gpu, self.fft_gpu.shape[0]) self.fft(yy_gpu, self.fft_gpu.shape[0]) self.fft(xx_gpu, self.fft_gpu.shape[0]) self.fft(xy_gpu, self.fft_gpu.shape[0]) # Do division in Fourier space z_gpu = cua.zeros(xy_gpu.shape, np.complex64) z_gpu = gputools.comp_ola_gdeconv(xx_gpu, xy_gpu, yx_gpu, yy_gpu, L_gpu, alpha, beta) # Computing the inverse FFT z_gpu = z_gpu.conj() self.fft(z_gpu, self.fft_gpu.shape[0]) z_gpu = z_gpu.conj() / np.prod(z_gpu.shape[-2::]) # Crop out the kernels zc_gpu = gputools.crop_stack_GPU(z_gpu, self.sf) return zc_gpu # -------------------------------------------------------------------- elif mode == 'direct': const_gpu = cua.empty_like(y_gpu) const_gpu.fill(1.) # First deconvolution without corrective term y_gpu = self.deconv(y_gpu, mode='xdirect', alpha=alpha, beta=beta, edgetapering=edgetapering) gputools.cliplower_GPU(y_gpu, 0) # Now same for constant image to get rid of window artifacts if edgetapering == 1: gputools.edgetaper_gpu(const_gpu, 2 * self.sf, 'barthann') const_gpu = self.deconv(const_gpu, mode='xdirect', alpha=alpha, beta=beta, edgetapering=edgetapering) gputools.edgetaper_gpu(const_gpu, 2 * self.sf, 'barthann') gputools.clip_GPU(const_gpu, 0.01, 10.) # Division of deconvolved latent and constant image to get rid # of artifacts stemming from windowing y_gpu = y_gpu / const_gpu sz = y_gpu.shape #gputools.clip_GPU(y_gpu, 0., 1.0) #gputools.edgetaper_gpu(y_gpu, 3*self.sf, 'barthann') # Do cropping and padding since edges are corrupted by division y_gpu = gputools.crop_gpu2cpu(y_gpu, sz - factor * self.sf - 1, offset=np.floor( (factor * self.sf - 1) / 2.)) y_gpu = gputools.impad_gpu(y_gpu, tuple(np.array(sz) - y_gpu.shape)) return y_gpu # -------------------------------------------------------------------- elif mode == 'xdirect': # Compute Laplacian if alpha > 0.: gx_gpu = gputools.pad_cpu2gpu(np.array([[-1, 1]]), self.sfft_gpu, dtype='complex') gy_gpu = gputools.pad_cpu2gpu(np.array([[-1], [1]]), self.sfft_gpu, dtype='complex') self.plan.execute(gx_gpu) self.plan.execute(gy_gpu) L_gpu = gx_gpu * gx_gpu.conj() + gy_gpu * gy_gpu.conj() else: L_gpu = cua.zeros(self.fft_gpu.shape, np.complex64) # Edgetapering of blurry input image if edgetapering == 1: gputools.edgetaper_gpu(y_gpu, 3 * self.sf, 'barthann') if self.mode == 'valid': #y_gpu = gputools.pad_cpu2gpu(y_gpu, self.sx, self.sf-1, dtype='real') offset = self.sf - 1 elif self.mode == 'same': offset = np.floor(self.sf / 2) else: raise NotImplementedError('Not a valid mode!') # Chop and pad business y_gpu = gputools.chop_pad_GPU(y, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, offset, 'complex') ws_gpu = gputools.pad_stack_GPU(self.winaux.ws_gpu, self.sfft_gpu, dtype='complex') # Windowing y_gpu = ws_gpu * y_gpu # Compute FFT self.fft(y_gpu, self.fft_gpu.shape[0]) # Do division in Fourier space z_gpu = gputools.comp_ola_deconv(self.fft_gpu, y_gpu, L_gpu, alpha, beta) # Computing the inverse FFT z_gpu = z_gpu.conj() self.fft(z_gpu, self.fft_gpu.shape[0]) z_gpu = z_gpu.conj() / np.prod(z_gpu.shape[-2::]) # Crop the solution to correct output size if self.__id__ == 'X': zc_gpu = gputools.crop_stack_GPU(z_gpu, self.sf) return zc_gpu elif self.__id__ == 'F': zs_gpu = gputools.crop_stack_GPU(z_gpu, self.winaux.sw) #zs_gpu = self.winaux.ws_gpu * zs_gpu zc_gpu = gputools.ola_GPU_test(zs_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop) zc_gpu = gputools.crop_gpu2cpu(zc_gpu, self.sx) return zc_gpu # -------------------------------------------------------------------- elif mode == 'sparse': # Compute Laplacian gx_gpu = gputools.pad_cpu2gpu(np.sqrt(2.) / 2. * np.array([[-1, 1]]), self.sfft_gpu, dtype='complex') gy_gpu = gputools.pad_cpu2gpu(np.sqrt(2.) / 2. * np.array([[-1], [1]]), self.sfft_gpu, dtype='complex') self.plan.execute(gx_gpu) self.plan.execute(gy_gpu) L_gpu = gx_gpu * gx_gpu.conj() + gy_gpu * gy_gpu.conj() const_gpu = cua.empty_like(y_gpu) const_gpu.fill(1.) # Edgetapering if edgetapering == 1: gputools.edgetaper_gpu(y_gpu, 2 * self.sf, 'barthann') gputools.edgetaper_gpu(const_gpu, 2 * self.sf, 'barthann') # Parameter settings beta = 1. beta_rate = 2. * np.sqrt(2.) beta_max = 2.**8 # Initialisation of x with padded version of y x_gpu = 1 * y_gpu if self.mode == 'valid': offset = self.sf - 1 elif self.mode == 'same': offset = np.floor(self.sf / 2) else: raise NotImplementedError('Not a valid mode!') # Chop and pad business y_gpu = gputools.chop_pad_GPU(y_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, offset, 'complex') const_gpu = gputools.chop_pad_GPU(const_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, offset, 'complex') ws_gpu = gputools.pad_stack_GPU(self.winaux.ws_gpu, self.sfft_gpu, offset, dtype='complex') # Windowing y_gpu = y_gpu * ws_gpu # Constant image for corrective weighting term const_gpu = const_gpu * ws_gpu del ws_gpu self.fft(const_gpu, self.fft_gpu.shape[0]) const_gpu = gputools.comp_ola_deconv(self.fft_gpu, const_gpu, L_gpu, alpha, gamma) const_gpu = const_gpu.conj() self.fft(const_gpu, self.fft_gpu.shape[0]) const_gpu = const_gpu.conj() / np.prod(const_gpu.shape[-2::]) const_gpu = gputools.crop_stack_GPU(const_gpu, self.winaux.sw) const_gpu = const_gpu * self.winaux.ws_gpu const_gpu = gputools.ola_GPU_test(const_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop) const_gpu = gputools.crop_gpu2cpu(const_gpu, self.sx) # For debugging purposes #scipy.misc.imsave('const1.png', const_gpu.get()/const_gpu.get().max()) gputools.cliplower_GPU(const_gpu, 0.01) const_gpu = 0.01 / const_gpu # Precompute F'y self.fft(y_gpu, self.fft_gpu.shape[0]) y_gpu = y_gpu * self.fft_gpu.conj() while beta < beta_max: # Compute gradient images of x xx_gpu, xy_gpu = gputools.gradient_gpu(x_gpu) del x_gpu # w sub-problem for alpha 2/3 gputools.modify_sparse23_gpu(xx_gpu, beta) gputools.modify_sparse23_gpu(xy_gpu, beta) #gputools.modify_sparse_gpu(xx_gpu, beta, 0.01) #gputools.modify_sparse_gpu(xy_gpu, beta, 0.01) # Chop and pad to size of FFT xx_gpu = gputools.chop_pad_GPU(xx_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, dtype='complex') xy_gpu = gputools.chop_pad_GPU(xy_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, dtype='complex') # Compute Fourier transform self.fft(xx_gpu, self.fft_gpu.shape[0]) self.fft(xy_gpu, self.fft_gpu.shape[0]) # Do division in Fourier space x_gpu = gputools.comp_ola_sdeconv(gx_gpu, gy_gpu, xx_gpu, xy_gpu, y_gpu, self.fft_gpu, L_gpu, alpha, beta, gamma) del xx_gpu, xy_gpu # Computing the inverse FFT x_gpu = x_gpu.conj() self.fft(x_gpu, self.fft_gpu.shape[0]) x_gpu = x_gpu.conj() x_gpu /= np.prod(x_gpu.shape[-2::]) # Ola and cropping x_gpu = gputools.crop_stack_GPU(x_gpu, self.winaux.sw) x_gpu = x_gpu * self.winaux.ws_gpu x_gpu = gputools.ola_GPU_test(x_gpu, self.winaux.csf, self.winaux.sw, self.winaux.nhop) x_gpu = gputools.crop_gpu2cpu(x_gpu, self.sx) # Enforce positivity x_gpu = x_gpu * const_gpu gputools.cliplower_GPU(x_gpu, 0.) beta *= beta_rate return x_gpu else: raise NotImplementedError('Not a valid deconv mode!')
def __init__(self, f, sx, mode, winaux): sf = np.array(f.shape)[-2::] sx = np.array(sx) sw = winaux.sw csf = winaux.csf nhop = winaux.nhop # Check what is f and what is x if (len(f.shape) == 3) and all(sx > sf): self.f = f self.x = [] self.__id__ = 'F' # Safety check if np.prod(f.shape[0]) != np.prod(csf): raise IOError('Size missmatch between winaux and PSF size!') elif (len(f.shape) == 2) and all(sx < sf): self.f = [] self.x = f self.__id__ = 'X' sf = sx sx = np.array(self.x.shape) elif any(sf < sx) and any(sf > sx): raise IOError('Size missmatch') # Safety check if any(winaux.sx != sx): raise IOError('Size missmatch between winaux and image size!') if mode == 'valid': sy = sx - sf + 1 elif mode == 'same': sy = sx elif mode == 'full': sy = sx + sf - 1 elif mode == 'circ': sy = sx else: raise NotImplementedError('Not a valid mode!') # Pad either f or x to be sized a power of 2 and copy it to device sfft = sw + sf - 1 sfft_gpu = (2**np.ceil(np.log2(sfft))) sfft_gpu = (int(sfft_gpu[0]), int(sfft_gpu[1])) if self.__id__ == 'F': # each kernel of PSF has to be padded fft_gpu = gputools.pad_stack_GPU(self.f, sfft_gpu, dtype='complex') self.sz = sx elif self.__id__ == 'X': # each patch has to be modulated by window fft_gpu = gputools.chop_mod_pad_GPU(self.x, winaux.ws_gpu, csf, sw, nhop, sz=sfft_gpu, dtype='complex') self.sz = sf # Create FFT plan and compute FFT plan = cufft.Plan(fft_gpu.shape[-2::]) self.plan = plan self.fft(fft_gpu, fft_gpu.shape[0]) self.sfft_gpu = sfft_gpu self.fft_gpu = fft_gpu self.winaux = winaux self.csf = csf self.sfft = sfft self.sf = sf self.sx = sx self.sy = sy self.mode = mode
def cnv(self, u): """ Description: cnv computes the correlation of the convolution matrix with either an image or PSF whether the parent class is an instance of F or X, i.e. Fx or Xf respectively. ---------------------------------------------------------------------- Usage: Call: Z = OlaGPU(z, sw, mode, winaux) y = Z.cnv(u) Input: u either image of PSF Ouput: y a blurry image """ # Pad either f or x and copy it to device if (len(u.shape) == 3) and (self.__id__ == 'X'): # Safety check if np.prod(u.shape[0]) != np.prod(self.winaux.csf): raise IOError('Size missmatch between winaux and PSF size!') u_gpu = gputools.pad_stack_GPU(u, self.sfft_gpu, dtype='complex') elif (len(u.shape) == 2) and (self.__id__ == 'F'): # Safety check if sum(u.shape != self.winaux.sx) > 0: raise IOError('Size missmatch between winaux and image size!') # Chop input image into overlapping patches, modulate them # by windows and do appropriate padding #u_gpu = gputools.chop_mod_pad_GPU(u, self.winaux.ws_gpu, # self.winaux.csf, self.winaux.sw, # self.winaux.nhop, sz=self.sfft_gpu, # dtype='complex') ############ # Something is wrong in above kernel, which should perform # modulation and padding in one kernel call. For now workaround: offset = (0, 0) u_gpu = gputools.chop_pad_GPU(u, self.winaux.csf, self.winaux.sw, self.winaux.nhop, self.sfft_gpu, offset, dtype='complex') ws_gpu = gputools.pad_stack_GPU(self.winaux.ws_gpu, self.sfft_gpu, offset, dtype='complex') self.ws = ws_gpu u_gpu = ws_gpu * u_gpu # Workauround ends here ############ # Compute FFT of input, do multiplication in Fourier space # and compute inverse Fourier transform self.fft(u_gpu, self.fft_gpu.shape[0]) # Strange enough: inverse does not work due to some error in pyfft # Therefore compute the inverse via conj(F(conj(x)))/length(x) # see Wikipedia for reference ys_gpu = (self.fft_gpu * u_gpu).conj() del u_gpu self.fft(ys_gpu, self.fft_gpu.shape[0]) ys_gpu = ys_gpu.conj() / np.prod(ys_gpu.shape[-2::]) # Do overlap and add y_gpu = gputools.ola_GPU_test(ys_gpu, self.winaux.csf, self.sf - 1 + self.winaux.sw, self.winaux.nhop) # Do cropping to correct output size if self.mode == 'valid': y = gputools.crop_gpu2cpu(y_gpu, self.sy, self.sf - 1) elif self.mode == 'same': y = gputools.crop_gpu2cpu(y_gpu, self.sy, np.floor(self.sf / 2)) elif self.mode == 'full': y = gputools.crop_gpu2cpu(y_gpu, self.sy) elif self.mode == 'circ': if u.__class__ == cua.GPUArray: raise NotImplementedError('Not a valid mode!') else: y = np.real(y_gpu.get()) y = imagetools.circshift(y, floor(self.sf / 2)) else: raise NotImplementedError('Not a valid mode!') if u.__class__ == np.ndarray: return np.array(y.get()) elif u.__class__ == cua.GPUArray: return y