Пример #1
0
def fit_gpytorch_torch(
    mll: MarginalLogLikelihood,
    bounds: Optional[ParameterBounds] = None,
    optimizer_cls: Optimizer = Adam,
    options: Optional[Dict[str, Any]] = None,
    track_iterations: bool = True,
) -> Tuple[MarginalLogLikelihood, List[OptimizationIteration]]:
    r"""Fit a gpytorch model by maximizing MLL with a torch optimizer.

    The model and likelihood in mll must already be in train mode.
    Note: this method requires that the model has `train_inputs` and `train_targets`.

    Args:
        mll: MarginalLogLikelihood to be maximized.
        bounds: A ParameterBounds dictionary mapping parameter names to tuples
            of lower and upper bounds. Bounds specified here take precedence
            over bounds on the same parameters specified in the constraints
            registered with the module.
        optimizer_cls: Torch optimizer to use. Must not require a closure.
        options: options for model fitting. Relevant options will be passed to
            the `optimizer_cls`. Additionally, options can include: "disp"
            to specify whether to display model fitting diagnostics and "maxiter"
            to specify the maximum number of iterations.
        track_iterations: Track the function values and wall time for each
            iteration.

    Returns:
        2-element tuple containing

        - mll with parameters optimized in-place.
        - List of OptimizationIteration objects with information on each
          iteration. If track_iterations is False, this will be an empty list.

    Example:
        >>> gp = SingleTaskGP(train_X, train_Y)
        >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
        >>> mll.train()
        >>> fit_gpytorch_torch(mll)
        >>> mll.eval()
    """
    optim_options = {"maxiter": 100, "disp": True, "lr": 0.05}
    optim_options.update(options or {})
    optimizer = optimizer_cls(
        params=[{"params": mll.parameters()}],
        **_filter_kwargs(optimizer_cls, **optim_options),
    )

    # get bounds specified in model (if any)
    bounds_: ParameterBounds = {}
    if hasattr(mll, "named_parameters_and_constraints"):
        for param_name, _, constraint in mll.named_parameters_and_constraints():
            if constraint is not None and not constraint.enforced:
                bounds_[param_name] = constraint.lower_bound, constraint.upper_bound

    # update with user-supplied bounds (overwrites if already exists)
    if bounds is not None:
        bounds_.update(bounds)

    iterations = []
    t1 = time.time()

    param_trajectory: Dict[str, List[Tensor]] = {
        name: [] for name, param in mll.named_parameters()
    }
    loss_trajectory: List[float] = []
    i = 0
    converged = False
    train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets
    while not converged:
        optimizer.zero_grad()
        output = mll.model(*train_inputs)
        # we sum here to support batch mode
        args = [output, train_targets] + _get_extra_mll_args(mll)
        loss = -mll(*args).sum()
        loss.backward()
        loss_trajectory.append(loss.item())
        for name, param in mll.named_parameters():
            param_trajectory[name].append(param.detach().clone())
        if optim_options["disp"] and (
            (i + 1) % 10 == 0 or i == (optim_options["maxiter"] - 1)
        ):
            print(f"Iter {i + 1}/{optim_options['maxiter']}: {loss.item()}")
        if track_iterations:
            iterations.append(OptimizationIteration(i, loss.item(), time.time() - t1))
        optimizer.step()
        # project onto bounds:
        if bounds_:
            for pname, param in mll.named_parameters():
                if pname in bounds_:
                    param.data = param.data.clamp(*bounds_[pname])
        i += 1
        converged = check_convergence(
            loss_trajectory=loss_trajectory,
            param_trajectory=param_trajectory,
            options={"maxiter": optim_options["maxiter"]},
        )
    return mll, iterations
Пример #2
0
def fit_gpytorch_torch(
    mll: MarginalLogLikelihood,
    bounds: Optional[ParameterBounds] = None,
    optimizer_cls: Optimizer = Adam,
    options: Optional[Dict[str, Any]] = None,
    track_iterations: bool = True,
    approx_mll: bool = True,
) -> Tuple[MarginalLogLikelihood, Dict[str, Union[float, List[OptimizationIteration]]]]:
    r"""Fit a gpytorch model by maximizing MLL with a torch optimizer.

    The model and likelihood in mll must already be in train mode.
    Note: this method requires that the model has `train_inputs` and `train_targets`.

    Args:
        mll: MarginalLogLikelihood to be maximized.
        bounds: A ParameterBounds dictionary mapping parameter names to tuples
            of lower and upper bounds. Bounds specified here take precedence
            over bounds on the same parameters specified in the constraints
            registered with the module.
        optimizer_cls: Torch optimizer to use. Must not require a closure.
        options: options for model fitting. Relevant options will be passed to
            the `optimizer_cls`. Additionally, options can include: "disp"
            to specify whether to display model fitting diagnostics and "maxiter"
            to specify the maximum number of iterations.
        track_iterations: Track the function values and wall time for each
            iteration.
        approx_mll: If True, use gpytorch's approximate MLL computation (
            according to the gpytorch defaults based on the training at size).
            Unlike for the deterministic algorithms used in fit_gpytorch_scipy,
            this is not an issue for stochastic optimizers.

    Returns:
        2-element tuple containing
        - mll with parameters optimized in-place.
        - Dictionary with the following key/values:
        "fopt": Best mll value.
        "wall_time": Wall time of fitting.
        "iterations": List of OptimizationIteration objects with information on each
        iteration. If track_iterations is False, will be empty.

    Example:
        >>> gp = SingleTaskGP(train_X, train_Y)
        >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
        >>> mll.train()
        >>> fit_gpytorch_torch(mll)
        >>> mll.eval()
    """
    optim_options = {"maxiter": 100, "disp": True, "lr": 0.05}
    optim_options.update(options or {})
    exclude = optim_options.pop("exclude", None)
    if exclude is not None:
        mll_params = [
            t for p_name, t in mll.named_parameters() if p_name not in exclude
        ]
    else:
        mll_params = list(mll.parameters())
    optimizer = optimizer_cls(
        params=[{"params": mll_params}],
        **_filter_kwargs(optimizer_cls, **optim_options),
    )

    # get bounds specified in model (if any)
    bounds_: ParameterBounds = {}
    if hasattr(mll, "named_parameters_and_constraints"):
        for param_name, _, constraint in mll.named_parameters_and_constraints():
            if constraint is not None and not constraint.enforced:
                bounds_[param_name] = constraint.lower_bound, constraint.upper_bound

    # update with user-supplied bounds (overwrites if already exists)
    if bounds is not None:
        bounds_.update(bounds)

    iterations = []
    t1 = time.time()

    param_trajectory: Dict[str, List[Tensor]] = {
        name: [] for name, param in mll.named_parameters()
    }
    loss_trajectory: List[float] = []
    i = 0
    converged = False
    convergence_criterion = ConvergenceCriterion(
        **_filter_kwargs(ConvergenceCriterion, **optim_options)
    )
    train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets
    while not converged:
        optimizer.zero_grad()
        with gpt_settings.fast_computations(log_prob=approx_mll):
            output = mll.model(*train_inputs)
            # we sum here to support batch mode
            args = [output, train_targets] + _get_extra_mll_args(mll)
            loss = -mll(*args).sum()
            loss.backward()
        loss_trajectory.append(loss.item())
        for name, param in mll.named_parameters():
            param_trajectory[name].append(param.detach().clone())
        if optim_options["disp"] and (
            (i + 1) % 10 == 0 or i == (optim_options["maxiter"] - 1)
        ):
            print(f"Iter {i + 1}/{optim_options['maxiter']}: {loss.item()}")
        if track_iterations:
            iterations.append(OptimizationIteration(i, loss.item(), time.time() - t1))
        optimizer.step()
        # project onto bounds:
        if bounds_:
            for pname, param in mll.named_parameters():
                if pname in bounds_:
                    param.data = param.data.clamp(*bounds_[pname])
        i += 1
        converged = convergence_criterion.evaluate(fvals=loss.detach())
    info_dict = {
        "fopt": loss_trajectory[-1],
        "wall_time": time.time() - t1,
        "iterations": iterations,
    }
    return mll, info_dict
Пример #3
0
def fit_gpytorch_torch(
    mll: MarginalLogLikelihood,
    bounds: Optional[ParameterBounds] = None,
    optimizer_cls: Optimizer = Adam,
    options: Optional[Dict[str, Any]] = None,
    track_iterations: bool = True,
) -> Tuple[MarginalLogLikelihood, List[OptimizationIteration]]:
    r"""Fit a gpytorch model by maximizing MLL with a torch optimizer.

    The model and likelihood in mll must already be in train mode.
    Note: this method requires that the model has `train_inputs` and `train_targets`.

    Args:
        mll: MarginalLogLikelihood to be maximized.
        bounds: A ParameterBounds dictionary mapping parameter names to tuples
            of lower and upper bounds. Bounds specified here take precedence
            over bounds on the same parameters specified in the constraints
            registered with the module.
        optimizer_cls: Torch optimizer to use. Must not require a closure.
        options: options for model fitting. Relevant options will be passed to
            the `optimizer_cls`. Additionally, options can include: "disp"
            to specify whether to display model fitting diagnostics and "maxiter"
            to specify the maximum number of iterations.
        track_iterations: Track the function values and wall time for each
            iteration.

    Returns:
        2-element tuple containing

        - mll with parameters optimized in-place.
        - List of OptimizationIteration objects with information on each
          iteration. If track_iterations is False, this will be an empty list.

    Example:
        >>> gp = SingleTaskGP(train_X, train_Y)
        >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
        >>> mll.train()
        >>> fit_gpytorch_torch(mll)
        >>> mll.eval()
    """
    optim_options = {"maxiter": 100, "disp": True, "lr": 0.05}
    optim_options.update(options or {})
    optimizer = optimizer_cls(
        params=[{
            "params": mll.parameters()
        }],
        **_filter_kwargs(optimizer_cls, **optim_options),
    )

    # get bounds specified in model (if any)
    bounds_: ParameterBounds = {}
    if hasattr(mll, "named_parameters_and_constraints"):
        for param_name, _, constraint in mll.named_parameters_and_constraints(
        ):
            if constraint is not None and not constraint.enforced:
                bounds_[
                    param_name] = constraint.lower_bound, constraint.upper_bound

    # update with user-supplied bounds (overwrites if already exists)
    if bounds is not None:
        bounds_.update(bounds)

    iterations = []
    t1 = time.time()

    param_trajectory: Dict[str, List[Tensor]] = {
        name: []
        for name, param in mll.named_parameters()
    }
    loss_trajectory: List[float] = []
    i = 0
    converged = False
    train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets
    while not converged:
        optimizer.zero_grad()
        output = mll.model(*train_inputs)
        # we sum here to support batch mode
        args = [output, train_targets] + _get_extra_mll_args(mll)
        loss = -mll(*args).sum()
        loss.backward()
        loss_trajectory.append(loss.item())
        for name, param in mll.named_parameters():
            param_trajectory[name].append(param.detach().clone())
        if optim_options["disp"] and ((i + 1) % 10 == 0
                                      or i == (optim_options["maxiter"] - 1)):
            print(f"Iter {i + 1}/{optim_options['maxiter']}: {loss.item()}")
        if track_iterations:
            iterations.append(
                OptimizationIteration(i, loss.item(),
                                      time.time() - t1))
        optimizer.step()
        # project onto bounds:
        if bounds_:
            for pname, param in mll.named_parameters():
                if pname in bounds_:
                    param.data = param.data.clamp(*bounds_[pname])
        i += 1
        converged = check_convergence(
            loss_trajectory=loss_trajectory,
            param_trajectory=param_trajectory,
            options={"maxiter": optim_options["maxiter"]},
        )
    return mll, iterations