def test_lkj_prior_batch_log_prob(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") prior = LKJPrior(2, torch.tensor([0.5, 1.5], device=device)) S = torch.eye(2, device=device) self.assertTrue(approx_equal(prior.log_prob(S), torch.tensor([-1.86942, -0.483129], device=S.device))) S = torch.stack([S, torch.tensor([[1.0, 0.5], [0.5, 1]], device=S.device)]) self.assertTrue(approx_equal(prior.log_prob(S), torch.tensor([-1.86942, -0.62697], device=S.device))) with self.assertRaises(ValueError): prior.log_prob(torch.eye(3, device=device))
def test_lkj_prior_log_prob(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") prior = LKJPrior(2, torch.tensor(0.5, device=device)) S = torch.eye(2, device=device) self.assertAlmostEqual(prior.log_prob(S).item(), -1.86942, places=4) S = torch.stack([S, torch.tensor([[1.0, 0.5], [0.5, 1]], device=S.device)]) self.assertTrue(approx_equal(prior.log_prob(S), torch.tensor([-1.86942, -1.72558], device=S.device))) with self.assertRaises(ValueError): prior.log_prob(torch.eye(3, device=device)) # For eta=1.0 log_prob is flat over all covariance matrices prior = LKJPrior(2, torch.tensor(1.0, device=device)) self.assertTrue(torch.all(prior.log_prob(S) == prior.C))
def test_lkj_prior_batch_log_prob(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") prior = LKJPrior(2, torch.tensor([0.5, 1.5], device=device)) dist = LKJCholesky(2, torch.tensor([0.5, 1.5], device=device)) S = torch.eye(2, device=device) S_chol = torch.linalg.cholesky(S) self.assertTrue(approx_equal(prior.log_prob(S), dist.log_prob(S_chol))) S = torch.stack( [S, torch.tensor([[1.0, 0.5], [0.5, 1]], device=S.device)]) S_chol = torch.linalg.cholesky(S) self.assertTrue(approx_equal(prior.log_prob(S), dist.log_prob(S_chol))) with self.assertRaises(ValueError): prior.log_prob(torch.eye(3, device=device))