if seed is not None: train_config["seed"] = seed train_config["gqcnn"]["seed"] = seed if tensorboard_port is not None: train_config["tensorboard_port"] = tensorboard_port gqcnn_params = train_config["gqcnn"] # Create a unique output folder based on the date and time. if save_datetime: # Create output dir. unique_name = time.strftime("%Y%m%d-%H%M%S") output_dir = os.path.join(output_dir, unique_name) utils.mkdir_safe(output_dir) # Set visible devices. if "gpu_list" in train_config: gqcnn_utils.set_cuda_visible_devices(train_config["gpu_list"]) # Fine-tune the network. start_time = time.time() gqcnn = get_gqcnn_model(backend)(gqcnn_params) trainer = get_gqcnn_trainer(backend)(gqcnn, dataset_dir, split_name, output_dir, train_config, name=name) trainer.finetune(model_dir) logger.info("Total Fine-tuning Time: " + str(utils.get_elapsed_time(time.time() - start_time)))
from gqcnn import get_gqcnn_model, get_gqcnn_trainer, utils as gqcnn_utils #%% logger = Logger.get_logger('tools/train.py') dataset_dir = '/home/ai/git/gqcnn/data/training/Dexnet-2.0_testTraining' train_config = YamlConfig('cfg/train_dex-net_2.0.yaml') gqcnn_params = train_config['gqcnn'] #%% print(os.path.join(dataset_dir, 'config.json')) config_filename = os.path.join(dataset_dir, 'config.json') print(config_filename) # print(os.getcwd()) #%% open(config_filename, 'r') config = json.load(open(config_filename, 'r')) #%% start_time = time.time() gqcnn = get_gqcnn_model('tf')(gqcnn_params) #%% trainer = get_gqcnn_trainer('tf')(gqcnn, 'data/training/Dexnet-2.0_testTraining', 'image_wise', 'models/', train_config, 'GQCNN-2.0_Training_from_Scratch') #%% trainer.train() #%% logger.info('Total Training Time: ' + str(utils.get_elapsed_time(time.time() - start_time)))