def setUp(self): import gc # python garbage collector import cudf # warmup s = cudf.Series([1, 2, 3, None, 4], nan_as_null=False) del(s) gc.collect() os.environ['GQUANT_PLUGIN_MODULE'] = 'tests.unit.custom_port_nodes' points_task_spec = { TaskSpecSchema.task_id: 'points_task', TaskSpecSchema.node_type: 'PointNode', TaskSpecSchema.conf: {'npts': 1000}, TaskSpecSchema.inputs: [] } distance_task_spec = { TaskSpecSchema.task_id: 'distance_by_cudf', TaskSpecSchema.node_type: 'DistanceNode', TaskSpecSchema.conf: {}, TaskSpecSchema.inputs: { 'points_df_in': 'points_task.points_df_out' } } tspec_list = [points_task_spec, distance_task_spec] self.tgraph = TaskGraph(tspec_list) # Create a temporary directory self._test_dir = tempfile.mkdtemp() os.environ['GQUANT_CACHE_DIR'] = os.path.join(self._test_dir, '.cache')
def mortgage_gquant_run(run_params_dict): '''Using dataframe-flow runs the tasks/workflow specified in the run_params_dict. Expected run_params_dict ex: run_params_dict = { 'replace_spec': replace_spec, 'task_spec_list': gquant_task_spec_list, 'out_list': out_list } gquant_task_spec_list - Mortgage ETL workflow list of task-specs. Refer to module mortgage_common function mortgage_etl_workflow_def. out_list - Expected to specify one output which should be the final dataframe produced by the mortgage ETL workflow. :param run_params_dict: Dictionary with parameters and gquant task list to run mortgage workflow. ''' from gquant.dataframe_flow import TaskGraph task_spec_list = run_params_dict['task_spec_list'] out_list = run_params_dict['out_list'] replace_spec = run_params_dict['replace_spec'] task_graph = TaskGraph(task_spec_list) (final_perf_acq_df, ) = task_graph.run(out_list, replace_spec) return final_perf_acq_df
def test_columns_and_ports_types_match(self): numgen_spec = copy.deepcopy(self.numgen_spec) numproc_spec = copy.deepcopy(self.numproc_spec) numgen_spec[TaskSpecSchema.conf] = {'columns_option': 'listnums'} tspec_list = [numgen_spec, numproc_spec] tgraph_valid = TaskGraph(tspec_list) sumout, = tgraph_valid.run(['numproc.sum']) self.assertEqual(sumout, 45)
def test_load_workflow(self): '''Test loading a workflow from yaml:''' from gquant.dataframe_flow import TaskGraph workflow_file = os.path.join(self._test_dir, 'test_save_workflow.yaml') with open(workflow_file, 'w') as wf: wf.write(WORKFLOW_YAML) task_list = TaskGraph.load_taskgraph(workflow_file) all_tasks_exist = True for t in task_list: match = False if t._task_spec in self._task_list: match = True if not match: all_tasks_exist = False break with StringIO() as yf: yaml.dump(self._task_list, yf, default_flow_style=False, sort_keys=False) yf.seek(0) err_msg = 'Load workflow failed. Missing expected task items.\n'\ 'EXPECTED WORKFLOW YAML:\n\n'\ '{wyaml}\n\n'\ 'GOT TASKS FORMATTED AS YAML:\n\n'\ '{tlist}\n\n'.format(wyaml=WORKFLOW_YAML, tlist=yf.read()) self.assertTrue(all_tasks_exist, err_msg)
def test_ports_connection_subclass_type_match(self): numgen_spec = copy.deepcopy(self.numgen_spec) numproc_spec = copy.deepcopy(self.numproc_spec) numgen_spec[TaskSpecSchema.conf] = { 'port_type': MyList, 'columns_option': 'mylistnums' } numproc_spec[TaskSpecSchema.conf] = {'port_type': list} tspec_list = [numgen_spec, numproc_spec] tgraph_valid = TaskGraph(tspec_list) sumout, = tgraph_valid.run(['numproc.sum']) self.assertEqual(sumout, 45)
def get_nodes_from_file(file): """ Given an input yaml file string. It returns a dict which has two keys. nodes: - list of node objects for the UI client. It contains all the necessary information about the node including the size of the node input ports, output ports, output column names/types, conf schema and conf data. edges: - list of edge objects for the UI client. It enumerate all the edges in the graph. Arguments ------- file: string file name Returns ------- dict nodes and edges of the graph data """ task_graph = TaskGraph.load_taskgraph(file) return get_nodes(task_graph)
def test_columns_type_mismatch(self): numgen_spec = copy.deepcopy(self.numgen_spec) numproc_spec = copy.deepcopy(self.numproc_spec) numgen_spec[TaskSpecSchema.conf] = {'columns_option': 'listnotnums'} tspec_list = [numgen_spec, numproc_spec] tgraph_invalid = TaskGraph(tspec_list) with self.assertRaises(LookupError) as cm: tgraph_invalid.run(['numproc.sum']) outerr_msg = '{}'.format(cm.exception) errmsg = 'Task "numproc" column "list" expected type "numbers" got '\ 'type "notnumbers" instead.' self.assertIn(errmsg, outerr_msg)
def test_load(self): '''Test that a taskgraph can be loaded from a yaml file. ''' workflow_file = os.path.join(self._test_dir, 'test_load_taskgraph.yaml') global TASKGRAPH_YAML with open(workflow_file, 'w') as wf: wf.write(TASKGRAPH_YAML) tspec_list = [task._task_spec for task in self.tgraph] tgraph = TaskGraph.load_taskgraph(workflow_file) all_tasks_exist = True for task in tgraph: if task._task_spec not in tspec_list: all_tasks_exist = False break with StringIO() as yf: yaml.dump(tspec_list, yf, default_flow_style=False, sort_keys=False) yf.seek(0) err_msg = 'Load taskgraph failed. Missing expected task items.\n'\ 'EXPECTED TASKGRAPH YAML:\n\n'\ '{wyaml}\n\n'\ 'GOT TASKS FORMATTED AS YAML:\n\n'\ '{tlist}\n\n'.format(wyaml=TASKGRAPH_YAML, tlist=yf.read()) self.assertTrue(all_tasks_exist, err_msg)
def test_columns_name_mismatch(self): numgen_spec = copy.deepcopy(self.numgen_spec) numproc_spec = copy.deepcopy(self.numproc_spec) numgen_spec[TaskSpecSchema.conf] = {'columns_option': 'rangenums'} tspec_list = [numgen_spec, numproc_spec] tgraph_invalid = TaskGraph(tspec_list) with self.assertRaises(LookupError) as cm: tgraph_invalid.run(['numproc.sum']) outerr_msg = '{}'.format(cm.exception) errmsg = 'Task "numproc" missing required column "list" from '\ '"numgen.numlist".' self.assertIn(errmsg, outerr_msg)
def _compute_hash_key(self): """ if hash changed, the port_setup, meta_setup and conf_json should be different In very rara case, might have the problem of hash collision, It affects the column, port and conf calculation. It won't change the computation result though. It returns the hash code, the loaded task_graph, the replacement conf obj """ task_graph = "" inputs = () replacementObj = {} input_node = "" task_graph_obj = None if 'taskgraph' in self.conf: task_graph = get_file_path(self.conf['taskgraph']) if os.path.exists(task_graph): with open(task_graph) as f: task_graph = hashlib.md5(f.read().encode()).hexdigest() task_graph_obj = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) self.update_replace(replacementObj, task_graph_obj) if 'input' in self.conf: for inp in self.conf['input']: input_node += inp+"," if hasattr(self, 'inputs'): for i in self.inputs: inputs += (hash(i['from_node']), i['to_port'], i['from_port']) return (hash((self.uid, task_graph, inputs, json.dumps(self.conf), input_node, json.dumps(replacementObj))), task_graph_obj, replacementObj)
def ports_setup(self): cache_key = self._compute_hash_key() if cache_key in cache_ports: # print('cache hit') return cache_ports[cache_key] inports = {} outports = {} if 'taskgraph' in self.conf: task_graph = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) replacementObj = {} self.update_replace(replacementObj) task_graph.build(replace=replacementObj) def inputNode_fun(inputNode, in_ports): inport = {} before_fix = inputNode.ports_setup().inports for key in before_fix.keys(): if key in in_ports: inport[key] = before_fix[key] inports.update(fix_port_name(inport, inputNode.uid)) def outNode_fun(outNode, out_ports): ouport = {} before_fix = outNode.ports_setup().outports for key in before_fix.keys(): if key in out_ports: ouport[key] = before_fix[key] outports.update(fix_port_name(ouport, outNode.uid)) self._make_sub_graph_connection(task_graph, inputNode_fun, outNode_fun) output_port = NodePorts(inports=inports, outports=outports) cache_ports[cache_key] = output_port return output_port
def post(self): # input_data is a dictionnary with a key "name" input_data = self.get_json_body() task_graph = TaskGraph(input_data) # import pudb # pudb.set_trace() nodes_and_edges = get_nodes(task_graph) self.finish(json.dumps(nodes_and_edges))
def test_ports_connection_subclass_type_mismatch(self): numgen_spec = copy.deepcopy(self.numgen_spec) numproc_spec = copy.deepcopy(self.numproc_spec) numgen_spec[TaskSpecSchema.conf] = {'columns_option': 'listnums'} numproc_spec[TaskSpecSchema.conf] = {'port_type': MyList} tspec_list = [numgen_spec, numproc_spec] tgraph_invalid = TaskGraph(tspec_list) with self.assertRaises(TypeError) as cm: tgraph_invalid.run(['numproc.sum']) outerr_msg = '{}'.format(cm.exception) errmsg = 'Connected nodes do not have matching port types. '\ 'Fix port types.' self.assertIn(errmsg, outerr_msg)
def test_ports_output_type_mismatch(self): numgen_spec = copy.deepcopy(self.numgen_spec) numproc_spec = copy.deepcopy(self.numproc_spec) numgen_spec[TaskSpecSchema.conf] = { 'columns_option': 'listnums', 'out_type': 'rangenums' } tspec_list = [numgen_spec, numproc_spec] tgraph_invalid = TaskGraph(tspec_list) with self.assertRaises(TypeError) as cm: tgraph_invalid.run(['numproc.sum']) outerr_msg = '{}'.format(cm.exception) errmsg = 'Node "numgen" output port "numlist" produced wrong type '\ '"<class \'range\'>". Expected type "[<class \'list\'>]"' self.assertEqual(errmsg, outerr_msg)
def main(): parser = argparse.ArgumentParser( description='Evaluate the dataframe flow graph') parser.add_argument('-t', '--task', help="the yaml task file") parser.add_argument('output', help="the output nodes", nargs='+') args = parser.parse_args() import pudb pudb.set_trace() task_graph = TaskGraph.load_workflow(args.task) print('output nodes:', args.output) task_graph.run(args.output)
def test_save_workflow(self): '''Test saving a workflow to yaml:''' from gquant.dataframe_flow import TaskGraph task_graph = TaskGraph(self._task_list) workflow_file = os.path.join(self._test_dir, 'test_save_workflow.yaml') task_graph.save_taskgraph(workflow_file) with open(workflow_file) as wf: workflow_str = wf.read() # verify the workflow contentst same as expected. Empty list if same. cdiff = list(context_diff(WORKFLOW_YAML, workflow_str)) cdiff_empty = cdiff == [] err_msg = 'Workflow yaml contents do not match expected results.\n'\ 'SHOULD HAVE SAVED:\n\n'\ '{wyaml}\n\n'\ 'INSTEAD FILE CONTAINS:\n\n'\ '{fcont}\n\n'\ 'DIFF:\n\n'\ '{diff}'.format(wyaml=WORKFLOW_YAML, fcont=workflow_str, diff=''.join(cdiff)) self.assertTrue(cdiff_empty, err_msg)
def columns_setup(self): cache_key = self._compute_hash_key() if cache_key in cache_columns: # print('cache hit') return cache_columns[cache_key] required = {} out_columns = {} if 'taskgraph' in self.conf: task_graph = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) replacementObj = {} self.update_replace(replacementObj) task_graph.build(replace=replacementObj) def inputNode_fun(inputNode, in_ports): req = {} # do columns_setup so required columns are ready inputNode.columns_setup() for key in inputNode.required.keys(): if key in in_ports: req[key] = inputNode.required[key] required.update(fix_port_name(req, inputNode.uid)) def outNode_fun(outNode, out_ports): oucols = {} before_fix = outNode.columns_setup() for key in before_fix.keys(): if key in out_ports: oucols[key] = before_fix[key] out_columns.update(fix_port_name(oucols, outNode.uid)) self._make_sub_graph_connection(task_graph, inputNode_fun, outNode_fun) self.required = required cache_columns[cache_key] = out_columns return out_columns
def process(self, inputs): """ Composite computation Arguments ------- inputs: list list of input dataframes. Returns ------- dataframe """ if 'taskgraph' in self.conf: task_graph = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) task_graph.build() outputLists = [] replaceObj = {} input_feeders = [] def inputNode_fun(inputNode, in_ports): inports = inputNode.ports_setup().inports class InputFeed(Node): def meta_setup(self): output = {} for inp in inputNode.inputs: output[inp['to_port']] = inp[ 'from_node'].meta_setup().outports[ inp['from_port']] # it will be something like { input_port: columns } return MetaData(inports={}, outports=output) def ports_setup(self): # it will be something like { input_port: types } return NodePorts(inports={}, outports=inports) def conf_schema(self): return ConfSchema() def process(self, empty): output = {} for key in inports.keys(): if inputNode.uid+'@'+key in inputs: output[key] = inputs[inputNode.uid+'@'+key] return output uni_id = str(uuid.uuid1()) obj = { TaskSpecSchema.task_id: uni_id, TaskSpecSchema.conf: {}, TaskSpecSchema.node_type: InputFeed, TaskSpecSchema.inputs: [] } input_feeders.append(obj) newInputs = {} for key in inports.keys(): if inputNode.uid+'@'+key in inputs: newInputs[key] = uni_id+'.'+key for inp in inputNode.inputs: if inp['to_port'] not in in_ports: # need to keep the old connections newInputs[inp['to_port']] = (inp['from_node'].uid + '.' + inp['from_port']) replaceObj.update({inputNode.uid: { TaskSpecSchema.inputs: newInputs} }) def outNode_fun(outNode, out_ports): out_ports = outNode.ports_setup().outports # fixed_outports = fix_port_name(out_ports, outNode.uid) for key in out_ports.keys(): if self.outport_connected(outNode.uid+'@'+key): outputLists.append(outNode.uid+'.'+key) self._make_sub_graph_connection(task_graph, inputNode_fun, outNode_fun) task_graph.extend(input_feeders) self.update_replace(replaceObj, task_graph) result = task_graph.run(outputLists, replace=replaceObj) output = {} for key in result.get_keys(): splits = key.split('.') output['@'.join(splits)] = result[key] return output else: return {}
def post(self): # input_data is a dictionnary with a key "name" input_data = self.get_json_body() task_graph = TaskGraph.load_taskgraph(input_data['path']) nodes_and_edges = get_nodes(task_graph) self.finish(json.dumps(nodes_and_edges))
def conf_schema(self): cache_key = self._compute_hash_key() if cache_key in cache_schema: # print('cache hit') return cache_schema[cache_key] json = { "title": "Composite Node configure", "type": "object", "description": """Use a sub taskgraph as a composite node""", "properties": { "taskgraph": { "type": "string", "description": "the taskgraph filepath" }, "input": { "type": "array", "description": "the input node ids", "items": { "type": "string" } }, "output": { "type": "array", "description": "the output node ids", "items": { "type": "string" } }, "subnode_ids": { "title": self.uid + " subnode ids", "type": "array", "items": { "type": "string" }, "description": """sub graph node ids that need to be reconfigured""" }, "subnodes_conf": { "title": self.uid + " subnodes configuration", "type": "object", "properties": {} } }, "required": ["taskgraph"], } ui = { "taskgraph": { "ui:widget": "TaskgraphSelector" }, "subnodes_conf": {} } if 'taskgraph' in self.conf: task_graphh = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) replacementObj = {} self.update_replace(replacementObj) task_graphh.build(replace=replacementObj) def inputNode_fun(inputNode, in_ports): pass def outNode_fun(outNode, out_ports): pass self._make_sub_graph_connection(task_graphh, inputNode_fun, outNode_fun) ids_in_graph = [] in_ports = [] out_ports = [] for t in task_graphh: node_id = t.get('id') if node_id != '': node = task_graphh[node_id] all_ports = node.ports_setup() for port in all_ports.inports.keys(): in_ports.append(node_id + '.' + port) for port in all_ports.outports.keys(): out_ports.append(node_id + '.' + port) ids_in_graph.append(node_id) json['properties']['input']['items']['enum'] = in_ports json['properties']['output']['items']['enum'] = out_ports json['properties']['subnode_ids']['items']['enum'] = ids_in_graph if 'subnode_ids' in self.conf: for subnodeId in self.conf['subnode_ids']: if subnodeId in task_graphh: nodeObj = task_graphh[subnodeId] schema = nodeObj.conf_schema() json['properties']["subnodes_conf"]['properties'][ subnodeId] = { "type": "object", "properties": { "conf": schema.json } } ui["subnodes_conf"].update( {subnodeId: { 'conf': schema.ui }}) out_schema = ConfSchema(json=json, ui=ui) cache_schema[cache_key] = out_schema return out_schema
class TestTaskGraphAPI(unittest.TestCase): def setUp(self): import gc # python garbage collector import cudf # warmup s = cudf.Series([1, 2, 3, None, 4], nan_as_null=False) del(s) gc.collect() os.environ['GQUANT_PLUGIN_MODULE'] = 'tests.unit.custom_port_nodes' points_task_spec = { TaskSpecSchema.task_id: 'points_task', TaskSpecSchema.node_type: 'PointNode', TaskSpecSchema.conf: {'npts': 1000}, TaskSpecSchema.inputs: [] } distance_task_spec = { TaskSpecSchema.task_id: 'distance_by_cudf', TaskSpecSchema.node_type: 'DistanceNode', TaskSpecSchema.conf: {}, TaskSpecSchema.inputs: { 'points_df_in': 'points_task.points_df_out' } } tspec_list = [points_task_spec, distance_task_spec] self.tgraph = TaskGraph(tspec_list) # Create a temporary directory self._test_dir = tempfile.mkdtemp() os.environ['GQUANT_CACHE_DIR'] = os.path.join(self._test_dir, '.cache') def tearDown(self): global DEFAULT_MODULE os.environ['GQUANT_PLUGIN_MODULE'] = DEFAULT_MODULE os.environ['GQUANT_CACHE_DIR'] = Node.cache_dir shutil.rmtree(self._test_dir) @ordered def test_viz_graph(self): '''Test taskgraph to networkx graph conversion for graph visualization. ''' nx_graph = self.tgraph.viz_graph(show_ports=True) nx_nodes = ['points_task', 'points_task.points_df_out', 'points_task.points_ddf_out', 'distance_by_cudf', 'distance_by_cudf.distance_df', 'distance_by_cudf.distance_abs_df'] nx_edges = [('points_task', 'points_task.points_df_out'), ('points_task', 'points_task.points_ddf_out'), ('points_task.points_df_out', 'distance_by_cudf'), ('distance_by_cudf', 'distance_by_cudf.distance_df'), ('distance_by_cudf', 'distance_by_cudf.distance_abs_df')] self.assertEqual(list(nx_graph.nodes), nx_nodes) self.assertEqual(list(nx_graph.edges), nx_edges) @ordered def test_build(self): '''Test build of a taskgraph and that all inputs and outputs are set for the tasks withink a taskgraph. ''' self.tgraph.build() points_node = self.tgraph['points_task'] distance_node = self.tgraph['distance_by_cudf'] onode_info = { 'to_node': distance_node, 'to_port': 'points_df_in', 'from_port': 'points_df_out' } self.assertIn(onode_info, points_node.outputs) onode_cols = {'points_df_out': {'x': 'float64', 'y': 'float64'}, 'points_ddf_out': {'x': 'float64', 'y': 'float64'}} self.assertEqual(onode_cols, points_node.meta_setup().outports) inode_info = { 'from_node': points_node, 'from_port': 'points_df_out', 'to_port': 'points_df_in' } self.assertIn(inode_info, distance_node.inputs) inode_in_cols = { 'points_df_in': { 'x': 'float64', 'y': 'float64' } } self.assertEqual(inode_in_cols, distance_node.get_input_meta()) inode_out_cols = {'distance_df': {'distance_cudf': 'float64', 'x': 'float64', 'y': 'float64'}, 'distance_abs_df': {'distance_abs_cudf': 'float64', 'x': 'float64', 'y': 'float64'}} self.assertEqual(inode_out_cols, distance_node.meta_setup().outports) @ordered def test_run(self): '''Test that a taskgraph can run successfully. ''' outlist = ['distance_by_cudf.distance_df'] # Using numpy random seed to get repeatable and deterministic results. # For seed 2335 should get something around 761.062831178. replace_spec = { 'points_task': { TaskSpecSchema.conf: { 'npts': 1000, 'nseed': 2335 } } } (dist_df_w_cudf, ) = self.tgraph.run( outputs=outlist, replace=replace_spec) dist_sum = dist_df_w_cudf['distance_cudf'].sum() # self.assertAlmostEqual(dist_sum, 0.0, places, msg, delta) self.assertAlmostEqual(dist_sum, 761.062831178) # match to 7 places @ordered def test_save(self): '''Test that a taskgraph can be save to a yaml file. ''' workflow_file = os.path.join(self._test_dir, 'test_save_taskgraph.yaml') self.tgraph.save_taskgraph(workflow_file) with open(workflow_file) as wf: workflow_str = wf.read() # verify the workflow contentst same as expected. Empty list if same. global TASKGRAPH_YAML cdiff = list(context_diff(TASKGRAPH_YAML, workflow_str)) cdiff_empty = cdiff == [] err_msg = 'Taskgraph yaml contents do not match expected results.\n'\ 'SHOULD HAVE SAVED:\n\n'\ '{wyaml}\n\n'\ 'INSTEAD FILE CONTAINS:\n\n'\ '{fcont}\n\n'\ 'DIFF:\n\n'\ '{diff}'.format(wyaml=TASKGRAPH_YAML, fcont=workflow_str, diff=''.join(cdiff)) self.assertTrue(cdiff_empty, err_msg) @ordered def test_load(self): '''Test that a taskgraph can be loaded from a yaml file. ''' workflow_file = os.path.join(self._test_dir, 'test_load_taskgraph.yaml') global TASKGRAPH_YAML with open(workflow_file, 'w') as wf: wf.write(TASKGRAPH_YAML) tspec_list = [task._task_spec for task in self.tgraph] tgraph = TaskGraph.load_taskgraph(workflow_file) all_tasks_exist = True for task in tgraph: if task._task_spec not in tspec_list: all_tasks_exist = False break with StringIO() as yf: yaml.dump(tspec_list, yf, default_flow_style=False, sort_keys=False) yf.seek(0) err_msg = 'Load taskgraph failed. Missing expected task items.\n'\ 'EXPECTED TASKGRAPH YAML:\n\n'\ '{wyaml}\n\n'\ 'GOT TASKS FORMATTED AS YAML:\n\n'\ '{tlist}\n\n'.format(wyaml=TASKGRAPH_YAML, tlist=yf.read()) self.assertTrue(all_tasks_exist, err_msg) @ordered def test_save_load_cache(self): '''Test caching of tasks outputs within a taskgraph. 1. Save points_task output to cache when running the taskgraph. 2. Load points_task df from cache when running the taskgraph. ''' replace_spec = {'points_task': {TaskSpecSchema.save: True}} outlist = ['distance_by_cudf.distance_df'] with warnings.catch_warnings(): # ignore UserWarning: Using CPU via Pandas to write HDF dataset warnings.filterwarnings( 'ignore', message='Using CPU via Pandas to write HDF dataset', category=UserWarning,) # ignore RuntimeWarning: numpy.ufunc size changed warnings.filterwarnings('ignore', category=RuntimeWarning, message='numpy.ufunc size changed') (_, ) = self.tgraph.run(outputs=outlist, replace=replace_spec) cache_dir = os.path.join(self._test_dir, '.cache', 'points_task.hdf5') self.assertTrue(os.path.exists(cache_dir)) replace_spec = {'points_task': {TaskSpecSchema.load: True}} with warnings.catch_warnings(): # ignore UserWarning: Using CPU via Pandas to read HDF dataset warnings.filterwarnings( 'ignore', message='Using CPU via Pandas to read HDF dataset', category=UserWarning) (_, ) = self.tgraph.run(outputs=outlist, replace=replace_spec)
def search_fun(config, checkpoint_dir=None): myinputs = {} for key in data_store.keys(): v = ray.get(data_store[key]) if isinstance(v, pandas.DataFrame): myinputs[key] = cudf.from_pandas(v) else: myinputs[key] = v task_graph = TaskGraph.load_taskgraph( get_file_path(self.conf['taskgraph'])) task_graph.build() outputLists = [train_id + '.' + 'checkpoint_dir'] replaceObj = {} input_feeders = [] def inputNode_fun(inputNode, in_ports): inports = inputNode.ports_setup().inports class InputFeed(Node): def meta_setup(self): output = {} for inp in inputNode.inputs: output[inp['to_port']] = inp[ 'from_node'].meta_setup()[inp['from_port']] # it will be something like { input_port: columns } return output def ports_setup(self): # it will be something like { input_port: types } return NodePorts(inports={}, outports=inports) def conf_schema(self): return ConfSchema() def process(self, empty): output = {} for key in inports.keys(): if (inputNode.uid + '@' + key in myinputs): output[key] = myinputs[inputNode.uid + '@' + key] return output uni_id = str(uuid.uuid1()) obj = { TaskSpecSchema.task_id: uni_id, TaskSpecSchema.conf: {}, TaskSpecSchema.node_type: InputFeed, TaskSpecSchema.inputs: [] } input_feeders.append(obj) newInputs = {} for key in inports.keys(): if inputNode.uid + '@' + key in myinputs: newInputs[key] = uni_id + '.' + key for inp in inputNode.inputs: if inp['to_port'] not in in_ports: # need to keep the old connections newInputs[inp['to_port']] = (inp['from_node'].uid + '.' + inp['from_port']) replaceObj.update( {inputNode.uid: { TaskSpecSchema.inputs: newInputs }}) def outNode_fun(outNode, out_ports): pass self._make_sub_graph_connection(task_graph, inputNode_fun, outNode_fun) task_graph.extend(input_feeders) self.update_conf_for_search(replaceObj, task_graph, config) task_graph.run(outputLists, replace=replaceObj)
def main(): _basedir = os.path.dirname(__file__) # mortgage_data_path = '/datasets/rapids_data/mortgage' mortgage_data_path = os.path.join(_basedir, 'mortgage_data') # Using some default csv files for testing. # csvfile_names = os.path.join(mortgage_data_path, 'names.csv') # acq_data_path = os.path.join(mortgage_data_path, 'acq') # perf_data_path = os.path.join(mortgage_data_path, 'perf') # csvfile_acqdata = os.path.join(acq_data_path, 'Acquisition_2000Q1.txt') # csvfile_perfdata = \ # os.path.join(perf_data_path, 'Performance_2000Q1.txt_0') # mortgage_etl_workflow_def( # csvfile_names, csvfile_acqdata, csvfile_perfdata) gquant_task_spec_list = mortgage_etl_workflow_def() start_year = 2000 end_year = 2001 # end_year is inclusive # end_year = 2016 # end_year is inclusive # part_count = 16 # the number of data files to train against part_count = 12 # the number of data files to train against # part_count = 4 # the number of data files to train against mortgage_run_params_dict_list = generate_mortgage_gquant_run_params_list( mortgage_data_path, start_year, end_year, part_count, gquant_task_spec_list) _basedir = os.path.dirname(__file__) mortgage_lib_module = os.path.join(_basedir, 'mortgage_gquant_plugins.py') mortgage_workflow_runner_task = { TaskSpecSchema.task_id: MortgageTaskNames.mortgage_workflow_runner_task_name, TaskSpecSchema.node_type: 'MortgageWorkflowRunner', TaskSpecSchema.conf: { 'mortgage_run_params_dict_list': mortgage_run_params_dict_list }, TaskSpecSchema.inputs: [], TaskSpecSchema.filepath: mortgage_lib_module } # Can be multi-gpu. Set ngpus > 1. This is different than dask xgboost # which is distributed multi-gpu i.e. dask-xgboost could distribute on one # node or multiple nodes. In distributed mode the dmatrix is disributed. ngpus = 1 xgb_gpu_params = { 'nround': 100, 'max_depth': 8, 'max_leaves': 2**8, 'alpha': 0.9, 'eta': 0.1, 'gamma': 0.1, 'learning_rate': 0.1, 'subsample': 1, 'reg_lambda': 1, 'scale_pos_weight': 2, 'min_child_weight': 30, 'tree_method': 'gpu_hist', 'n_gpus': ngpus, # 'distributed_dask': True, 'loss': 'ls', # 'objective': 'gpu:reg:linear', 'objective': 'reg:squarederror', 'max_features': 'auto', 'criterion': 'friedman_mse', 'grow_policy': 'lossguide', 'verbose': True } xgb_trainer_task = { TaskSpecSchema.task_id: MortgageTaskNames.xgb_trainer_task_name, TaskSpecSchema.node_type: 'XgbMortgageTrainer', TaskSpecSchema.conf: { 'delete_dataframes': False, 'xgb_gpu_params': xgb_gpu_params }, TaskSpecSchema.inputs: [MortgageTaskNames.mortgage_workflow_runner_task_name], TaskSpecSchema.filepath: mortgage_lib_module } task_spec_list = [mortgage_workflow_runner_task, xgb_trainer_task] task_graph = TaskGraph(task_spec_list) # out_list = [MortgageTaskNames.mortgage_workflow_runner_task_name] # ((mortgage_feat_df_pandas, delinq_df_pandas),) = task_graph.run(out_list) out_list = [MortgageTaskNames.xgb_trainer_task_name] (bst, ) = task_graph.run(out_list) print('XGBOOST BOOSTER:\n', bst)
def main(): memory_limit = 128e9 threads_per_worker = 4 cluster = LocalCUDACluster(memory_limit=memory_limit, threads_per_worker=threads_per_worker) client = Client(cluster) sched_info = client.scheduler_info() print('CLIENT: {}'.format(client)) print('SCHEDULER INFO:\n{}'.format(json.dumps(sched_info, indent=2))) # Importing here in case RMM is used later on. Must start client prior # to importing cudf stuff if using RMM. from gquant.dataframe_flow import (TaskSpecSchema, TaskGraph) # workers_names = \ # [iw['name'] for iw in client.scheduler_info()['workers'].values()] # nworkers = len(workers_names) _basedir = os.path.dirname(__file__) # mortgage_data_path = '/datasets/rapids_data/mortgage' mortgage_data_path = os.path.join(_basedir, 'mortgage_data') # Using some default csv files for testing. # csvfile_names = os.path.join(mortgage_data_path, 'names.csv') # acq_data_path = os.path.join(mortgage_data_path, 'acq') # perf_data_path = os.path.join(mortgage_data_path, 'perf') # csvfile_acqdata = os.path.join(acq_data_path, 'Acquisition_2000Q1.txt') # csvfile_perfdata = \ # os.path.join(perf_data_path, 'Performance_2000Q1.txt_0') # mortgage_etl_workflow_def( # csvfile_names, csvfile_acqdata, csvfile_perfdata) gquant_task_spec_list = mortgage_etl_workflow_def() start_year = 2000 end_year = 2001 # end_year is inclusive # end_year = 2016 # end_year is inclusive # part_count = 16 # the number of data files to train against # create_dmatrix_serially - When False on same node if not enough host RAM # then it's a race condition when creating the dmatrix. Make sure enough # host RAM otherwise set to True. # create_dmatrix_serially = False # able to do 18 with create_dmatrix_serially set to True part_count = 18 # the number of data files to train against create_dmatrix_serially = True # part_count = 4 # the number of data files to train against # Use RAPIDS Memory Manager. Seems to work fine without it. use_rmm = False # Clean up intermediate dataframes in the xgboost training task. delete_dataframes = True mortgage_run_params_dict_list = generate_mortgage_gquant_run_params_list( mortgage_data_path, start_year, end_year, part_count, gquant_task_spec_list) _basedir = os.path.dirname(__file__) mortgage_lib_module = os.path.join(_basedir, 'mortgage_gquant_plugins.py') filter_dask_logger = False mortgage_workflow_runner_task = { TaskSpecSchema.task_id: MortgageTaskNames.dask_mortgage_workflow_runner_task_name, TaskSpecSchema.node_type: 'DaskMortgageWorkflowRunner', TaskSpecSchema.conf: { 'mortgage_run_params_dict_list': mortgage_run_params_dict_list, 'client': client, 'use_rmm': use_rmm, 'filter_dask_logger': filter_dask_logger, }, TaskSpecSchema.inputs: [], TaskSpecSchema.filepath: mortgage_lib_module } dxgb_gpu_params = { 'nround': 100, 'max_depth': 8, 'max_leaves': 2**8, 'alpha': 0.9, 'eta': 0.1, 'gamma': 0.1, 'learning_rate': 0.1, 'subsample': 1, 'reg_lambda': 1, 'scale_pos_weight': 2, 'min_child_weight': 30, 'tree_method': 'gpu_hist', 'n_gpus': 1, 'distributed_dask': True, 'loss': 'ls', # 'objective': 'gpu:reg:linear', 'objective': 'reg:squarederror', 'max_features': 'auto', 'criterion': 'friedman_mse', 'grow_policy': 'lossguide', 'verbose': True } dxgb_trainer_task = { TaskSpecSchema.task_id: MortgageTaskNames.dask_xgb_trainer_task_name, TaskSpecSchema.node_type: 'DaskXgbMortgageTrainer', TaskSpecSchema.conf: { 'create_dmatrix_serially': create_dmatrix_serially, 'delete_dataframes': delete_dataframes, 'dxgb_gpu_params': dxgb_gpu_params, 'client': client, 'filter_dask_logger': filter_dask_logger }, TaskSpecSchema.inputs: [MortgageTaskNames.dask_mortgage_workflow_runner_task_name], TaskSpecSchema.filepath: mortgage_lib_module } task_spec_list = [mortgage_workflow_runner_task, dxgb_trainer_task] out_list = [MortgageTaskNames.dask_xgb_trainer_task_name] task_graph = TaskGraph(task_spec_list) (bst, ) = task_graph.run(out_list) print('XGBOOST BOOSTER:\n', bst)