Пример #1
0
def output(partId):
    # Random Test Cases
    X1 = np.column_stack(
        (np.ones(20), np.exp(1) + np.exp(2) * np.linspace(0.1, 2, 20)))
    Y1 = X1[:, 1] + np.sin(X1[:, 0]) + np.cos(X1[:, 1])
    X2 = np.column_stack((X1, X1[:, 1]**0.5, X1[:, 1]**0.25))
    Y2 = np.power(Y1, 0.5) + Y1
    if partId == '1':
        out = formatter('%0.5f ', warmUpExercise())
    elif partId == '2':
        out = formatter('%0.5f ', computeCost(X1, Y1, np.array([0.5, -0.5])))
    elif partId == '3':
        out = formatter(
            '%0.5f ', gradientDescent(X1, Y1, np.array([0.5, -0.5]), 0.01, 10))
    elif partId == '4':
        out = formatter('%0.5f ', featureNormalize(X2[:, 1:4]))
    elif partId == '5':
        out = formatter(
            '%0.5f ', computeCostMulti(X2, Y2, np.array([0.1, 0.2, 0.3, 0.4])))
    elif partId == '6':
        out = formatter(
            '%0.5f ',
            gradientDescentMulti(X2, Y2, np.array([-0.1, -0.2, -0.3, -0.4]),
                                 0.01, 10))
    elif partId == '7':
        out = formatter('%0.5f ', normalEqn(X2, Y2))
    return out
Пример #2
0
def output(partId):
	# Random Test Cases
	X1 = column_stack((ones(20), exp(1) + dot(exp(2), arange(0.1, 2.1, 0.1))))
	Y1 = X1[:,1] + sin(X1[:,0]) + cos(X1[:,1])
	X2 = column_stack((X1, X1[:,1]**0.5, X1[:,1]**0.25))
	Y2 = Y1**0.5 + Y1
	if partId == '1':
		return sprintf('%0.5f ', warmUpExercise())
	elif partId == '2':
		return sprintf('%0.5f ', computeCost(X1, Y1, array([0.5, -0.5])))
	elif partId == '3':
		return sprintf('%0.5f ', gradientDescent(X1, Y1, array([0.5, -0.5]), 0.01, 10))
	elif partId == '4':
		return sprintf('%0.5f ', featureNormalize(X2[:,1:3]));
	elif partId == '5':
		return sprintf('%0.5f ', computeCostMulti(X2, Y2, array([0.1, 0.2, 0.3, 0.4])))
	elif partId == '6':
		return sprintf('%0.5f ', gradientDescentMulti(X2, Y2, array([-0.1, -0.2, -0.3, -0.4]), 0.01, 10))
	elif partId == '7':
		return sprintf('%0.5f ', normalEqn(X2, Y2))
Пример #3
0
# Add intercept term to X
X_padded = np.column_stack((np.ones(
    (m, 1)), X_norm))  # Add a column of ones to x

## ================ Part 2: Gradient Descent ================

print('Running gradient descent...')

# Choose some alpha value
alpha = 0.01
num_iters = 400

# Init Theta and Run Gradient Descent
theta = np.zeros((3, 1))

theta, J_history = gdm.gradientDescentMulti(X_padded, y, theta, alpha,
                                            num_iters)

# Plot the convergence graph
plt.plot(range(J_history.size), J_history, "-b", linewidth=2)
plt.xlabel('Number of iterations')
plt.ylabel('Cost J')
plt.show(block=False)

# Display gradient descent's result
print('Theta computed from gradient descent: ')
print("{:f}, {:f}, {:f}".format(theta[0, 0], theta[1, 0], theta[2, 0]))
print("")

# Estimate the price of a 1650 sq-ft, 3 br house
# ====================== YOUR CODE HERE ======================
# Recall that the first column of X is all-ones. Thus, it does
Пример #4
0
ones = np.ones((len(x), 1))
X = np.hstack((ones, X))
#print(np.hstack((ones, X)))

# Gradient Descent
# 1) Try different values of alpha
# 2) prediction (With feature normalisation)

alpha = 0.009
#0.009, try 0.01, 0.009.
num_iters = 350

# Init Theta and Run Gradient Descent
theta = np.zeros((3, 1))

[theta, J_History] = gdm.gradientDescentMulti(X, y, theta, alpha, num_iters)

print('Values of theta:')
print(theta)
plot.plot(J_History)
plot.title('Convergence Graph')
plot.xlabel('No Of Iterations')
plot.ylabel('Cost J')
'''
iteration = np.zeros((num_iters, 1))
for i in range(num_iters):
    iteration[i, :] = i

plot.plot(iteration, J_History)
'''
# Prediction
Пример #5
0
from featureNormalize import featureNormalize
from computeCostMulti import computeCostMulti, computeCostMulti2
from gradientDescentMulti import gradientDescentMulti

#3
data = pd.read_csv('ex1data2.txt', header=None)  #read from dataset
X = data.iloc[:, 0:2]  # read first 2column
y = data.iloc[:, 2]  # read third column
m = len(y)  # number of training example
data_top = data.head()  # view first few rows of the data
print(data_top)

#3.1
X = featureNormalize(X)

#3.2
ones = np.ones((m, 1))
y = y[:, np.newaxis]
X = np.hstack((ones, X))  # adding the intercept term
theta = np.zeros([3, 1])
iterations = 400
alpha = 0.01

J = computeCostMulti(X, y, theta)
print('CostFunction: ', J)
J1 = computeCostMulti2(X, y, theta)
print('CostFunction2: ', J1)

theta = gradientDescentMulti(X, y, theta, alpha, iterations)
print('Theta from gradientDescent: ', theta)
def testGradientDescentMulti1():
    X = array([[1.,0.]])
    y = array([0.])
    theta = array([0.,0.])
    th = gradientDescentMulti(X, y, theta, 0, 0)[0]
    assert_array_equal(th, theta)
def testGradientDescentMulti8():
    X = column_stack((ones(10), sin(arange(10)), cos(arange(10)), linspace(0.3,0.7,10)))
    y = arange(10)
    theta = array([1.,2.,3.,4.])
    th = gradientDescentMulti(X, y, theta, 0.05, 100)[0]
    assert_array_almost_equal(th, array([1.6225,  0.39764, -0.39422,  5.7765]), decimal=3)
def ex1_multi():
    # Initialization

    # ================ Part 1: Feature Normalization ================

    # Clear and Close Figures
    #clear ; close all; clc

    print('Loading data ...')

    # Load Data
    data = np.loadtxt('ex1data2.txt', delimiter=',')
    X = np.reshape(data[:, 0:2], (data.shape[0], 2))
    y = np.reshape(data[:, 2], (data.shape[0], 1))
    m = y.shape[0]

    # Print out some data points
    print('First 10 examples from the dataset: ')
    print(np.c_[X[0:10, :], y[0:10, :]].T)

    print('Program paused. Press enter to continue.')
    #input()

    # Scale features and set them to zero mean
    print('Normalizing Features ...')

    X, mu, sigma = featureNormalize(X)

    # Add intercept term to X
    X = np.c_[np.ones((m, 1)), X]


    # ================ Part 2: Gradient Descent ================

    # ====================== YOUR CODE HERE ======================
    # Instructions: We have provided you with the following starter
    #               code that runs gradient descent with a particular
    #               learning rate (alpha).
    #
    #               Your task is to first make sure that your functions -
    #               computeCost and gradientDescent already work with
    #               this starter code and support multiple variables.
    #
    #               After that, try running gradient descent with
    #               different values of alpha and see which one gives
    #               you the best result.
    #
    #               Finally, you should complete the code at the end
    #               to predict the price of a 1650 sq-ft, 3 br house.
    #
    # Hint: By using the 'hold on' command, you can plot multiple
    #       graphs on the same figure.

    # Hint: At prediction, make sure you do the same feature normalization.


    # Begin: My code plotting for different learning rates
    alphas = [0.3, 0.1, 0.03, 0.01]
    colors = ['r', 'g', 'b', 'k']
    short_iters = 50
    fig = plt.figure()
    #hold on;
    plt.xlabel('Number of iterations')
    plt.ylabel('Cost J')
    for i in range(len(alphas)):
        _, J = gradientDescentMulti(X, y, np.reshape(np.zeros((3, 1)), (3, 1)), alphas[i], short_iters)
        plt.plot(range(len(J)), J, colors[i], markersize=2)
    plt.savefig('figure1.multi.png')
    # End: My code plotting for different learning rates

    print('Running gradient descent ...')

    # Choose some alpha value
    alpha = 0.01
    num_iters = 400

    # Init Theta and Run Gradient Descent
    theta = np.reshape(np.zeros((3, 1)), (3, 1))
    theta, J_history = gradientDescentMulti(X, y, theta, alpha, num_iters)

    # Plot the convergence graph
    fig = plt.figure()
    plt.plot(range(len(J_history)), J_history, '-b', markersize=2)
    plt.xlabel('Number of iterations')
    plt.ylabel('Cost J')
    plt.savefig('figure2.multi.png')

    # Display gradient descent's result
    print('Theta computed from gradient descent: ')
    print(theta)
    print()

    # Estimate the price of a 1650 sq-ft, 3 br house
    # ====================== YOUR CODE HERE ======================
    # Recall that the first column of X is all-ones. Thus, it does
    # not need to be normalized.
    #price = 0; % You should change this

    price = np.dot(np.r_[1, np.divide(np.subtract([1650, 3], mu), sigma)], theta)

    # ============================================================

    print('Predicted price of a 1650 sq-ft, 3 br house (using gradient descent):\n $%f' % price)

    print('Program paused. Press enter to continue.')
    #input()

    # ================ Part 3: Normal Equations ================

    print('Solving with normal equations...')

    # ====================== YOUR CODE HERE ======================
    # Instructions: The following code computes the closed form
    #               solution for linear regression using the normal
    #               equations. You should complete the code in
    #               normalEqn.m
    #
    #               After doing so, you should complete this code
    #               to predict the price of a 1650 sq-ft, 3 br house.
    #

    # Load Data
    data = np.loadtxt('ex1data2.txt', delimiter=',')
    X = np.reshape(data[:, 0:2], (data.shape[0], 2))
    y = np.reshape(data[:, 2], (data.shape[0], 1))
    m = y.shape[0]

    # Add intercept term to X
    X = np.c_[np.ones((m, 1)), X]

    # Calculate the parameters from the normal equation
    theta = normalEqn(X, y)

    # Display normal equation's result
    print('Theta computed from the normal equations: ')
    print(theta)
    print('')


    # Estimate the price of a 1650 sq-ft, 3 br house
    # ====================== YOUR CODE HERE ======================
    price = np.dot([1, 1650, 3], theta) # You should change this


    # ============================================================

    print('Predicted price of a 1650 sq-ft, 3 br house (using normal equations):\n $%f' % price)

    # http://scikit-learn.org/stable/auto_examples/linear_model/plot_ridge_coeffs.html
    # Using sklearn
    X = np.reshape(data[:, 0:2], (data.shape[0], 2))
    y = np.reshape(data[:, 2], (data.shape[0], 1))
    model = linear_model.Ridge(max_iter=num_iters, solver='lsqr')
    count = 200
    alphas = np.logspace(-3, 1, count)
    coefs = np.zeros((count, 2))
    errors = np.zeros((count, 1))
    for i, alpha in enumerate(alphas):
        model.set_params(alpha=alpha)
        model.fit(X, y)
        coefs[i, :] = model.coef_
        errors[i, 0] = metrics.mean_squared_error(model.predict(X), y)
    results = [(r'$\theta_1$', coefs[:, 0]), (r'$\theta_2$', coefs[:, 1]), ('MSE', errors)]
    for i, result in enumerate(results):
        label, values = result
        plt.figure()
        ax = plt.gca()
        ax.set_xscale('log')
        ax.plot(alphas, values)
        plt.xlabel(r'$\alpha$')
        plt.ylabel(label)
        plt.savefig('figure%d.multi.sklearn.png' % (i + 1))
    #model = linear_model.LinearRegression()
    model = linear_model.Ridge(alpha=alpha, max_iter=num_iters, solver='lsqr')
    model.fit(X, y)
    print('Theta found: ')
    print('%f %f %f' % (model.intercept_[0], model.coef_[0, 0], model.coef_[0, 1]))
    print('Predicted price of a 1650 sq-ft, 3 br house (using sklearn):\n $%f' % model.predict([[1650, 3]]))
def testGradientDescentMulti5():
    X = column_stack((ones(101), linspace(0,10,101)))
    y = sin(linspace(0,10,101))
    theta = array([1.,-1.])
    th = gradientDescentMulti(X, y, theta, 0.05, 100)[0]
    assert_array_almost_equal(th, array([0.5132, -0.0545]), decimal=3)
def testGradientDescentMulti4():
    X = column_stack((ones(10), arange(10)))
    y = arange(10)*2
    theta = array([1.,2.])
    th = gradientDescentMulti(X, y, theta, 0.05, 100)[0]
    assert_array_almost_equal(th, array([0.2353, 1.9625]), decimal=3)
X, mu, sigma = featureNormalize(X)

X = np.array(X)
X = np.insert(X, 0, 1, axis=1)
y = np.array(y).reshape(m, 1)

##================ Part 2: Gradient Descent ================##
print('Running Gradient Descent...')

alpha = 0.01
iterations = 400

theta = np.zeros([3, 1])

theta, J_history = gradientDescentMulti(X, y, theta, alpha, iterations)

#Plot the convergence plot
plt.plot(J_history)
plt.xlabel('Number of iterations')
plt.ylabel('Cost J')
plt.show()

print('Theta computed from gradient descent: \n', theta)

X_pred = np.array([1650, 3])
X_predn = (X_pred - mu) / sigma
X_predn = np.insert(X_predn, 0, 1)
y_pred = X_predn.dot(theta)

print(
Пример #12
0
#
# Hint: By using the 'hold on' command, you can plot multiple
#       graphs on the same figure.
#
# Hint: At prediction, make sure you do the same feature normalization.
#

print 'Running gradient descent ...'

# Choose some alpha value
alpha = 0.01
num_iters = 400

# Init Theta and Run Gradient Descent
theta = np.zeros(3)
theta, theta_history, J_history = gradientDescentMulti(Xnorm, y, theta, alpha,
                                                       num_iters)

# Plot the convergence graph
plotConvergence(J_history, num_iters)
#dummy = plt.ylim([4,7])
plt.show(block=False)

# Display gradient descent's result
print 'Theta computed from gradient descent: '
print theta

# Estimate the price of a 1650 sq-ft, 3 br house
#We did: Xnorm, mu, sigma = featureNormalize(X)

test = np.array([1650, 3])
scaled = (test - mu[1:]) / sigma[1:]
# Add intercept term to X
X_padded = np.column_stack((np.ones((m,1)), X_norm)) # Add a column of ones to x


## ================ Part 2: Gradient Descent ================

print('Running gradient descent...')

# Choose some alpha value
alpha = 0.01
num_iters = 400

# Init Theta and Run Gradient Descent 
theta = np.zeros((3, 1)) 

theta, J_history = gdm.gradientDescentMulti(X_padded, y, theta, alpha, num_iters)

# Plot the convergence graph
plt.plot(xrange(J_history.size), J_history, "-b", linewidth=2 )
plt.xlabel('Number of iterations')
plt.ylabel('Cost J')
plt.show(block=False)

# Display gradient descent's result
print('Theta computed from gradient descent: ')
print("{:f}, {:f}, {:f}".format(theta[0,0], theta[1,0], theta[2,0]))
print("")

# Estimate the price of a 1650 sq-ft, 3 br house
# ====================== YOUR CODE HERE ======================
# Recall that the first column of X is all-ones. Thus, it does
Пример #14
0
    # Add intercept term to X
    X = np.hstack((np.ones((m, 1)), X))

    # ================ Part 2: Gradient Descent ================

    # ====================== YOUR CODE HERE ====================

    print('Running gradient descent ...')

    # Choose some alpha value
    alpha = 0.01
    num_iters = 400

    # Init Theta and Run Gradient Descent
    theta = np.zeros((3, 1))
    theta, J_history = gradientDescentMulti(X, y, theta, alpha, num_iters)

    # Plot the convergence graph
    plt.plot(range(len(J_history)), J_history, '-b')
    plt.xlabel('Number of iterations')
    plt.ylabel('Cost J')
    plt.show()

    # Display gradient descent's result
    print('Theta computed from gradient descent:')
    print(theta)

    # Estimate the price of a 1650 sq-ft, 3 br house
    # ====================== YOUR CODE HERE ======================

    price = 0  # You should change this
def testGradientDescentMulti7():
    X = column_stack((ones(10), arange(10), arange(10)))
    y = arange(10)*2
    theta = array([0.,0.,0.])
    th = gradientDescentMulti(X, y, theta, 1, 1)[0]
    assert_array_almost_equal(th, array([9.,57.,57.]))
X, mu, sigma = featureNormalize(X)

# Add intercept term to X
X = np.vstack((np.ones(m), X.T)).T

## ================ Part 2: Gradient Descent ================

print('Running gradient descent ...\n')

# Choose some alpha value
alpha = 0.01
num_iters = 400

# Init Theta and Run Gradient Descent
theta = np.zeros((3, 1))
theta, J_history = gradientDescentMulti(X, y, theta, alpha, num_iters)

# Plot the convergence graph
plt.ion()
plt.figure()
plt.plot(np.arange(0, J_history.size, 1), J_history, '-g')
plt.xlabel('Number of iterations')
plt.ylabel('Cost J')

# Display gradient descent's result
print('Theta computed from gradient descent: \n')
print(theta)
print('\n')

temp = np.array([[1.0, 1650.0, 3.0]])
temp[0, 1:3] = (temp[0, 1:3] - mu) / sigma
## ================ Part 2: Gradient Descent ================

print('Running gradient descent ...')

# perform linear regression on the data set
alpha1 = 0.001
alpha2 = 0.01
alpha3 = 0.05
num_iters = 400

# Initialize Theta and run Gradient Descent
theta = np.zeros((3, 1))

theta_1 = np.zeros((2, 1))

theta1, J_history1 = gradientDescentMulti(X_padded, y, theta, alpha1,
                                          num_iters)
theta2, J_history2 = gradientDescentMulti(X_padded, y, theta, alpha2,
                                          num_iters)
theta3, J_history3 = gradientDescentMulti(X_padded, y, theta, alpha3,
                                          num_iters)

theta4, J_history4 = gradientDescentMulti(X_norm, y, theta_1, alpha2,
                                          num_iters)

theta5, J_history5 = gradientDescentMulti(X, y, theta_1, alpha2, num_iters)

print 'Theta 5 is:'
print theta5

#get the cost (error) of the model
#computeCostMulti(X, y, theta)