Пример #1
0
 def __init__(self, grammar, device, hparams=stgs.VAE_HPARAMS):
     """
     Load trained encoder/decoder and grammar model
     :param grammar: A nas_grammar.Grammar object
     :param hparams: dict, hyperparameters for the VAE and the grammar model
     """
     self._grammar = grammar
     self.device = device
     self.hp = hparams
     self.max_len = self.hp['max_len']
     self._productions = self._grammar.GCFG.productions()
     self._prod_map = make_prod_map(grammar.GCFG)
     self._parser = nltk.ChartParser(grammar.GCFG)
     self._tokenize = make_tokenizer(grammar.GCFG)
     self._n_chars = len(self._productions)
     self._lhs_map = grammar.lhs_map
     self.vae = NA_VAE(self.hp)
     self.vae.eval()
Пример #2
0
    def __init__(self,
                 cfg,
                 min_sample_depth,
                 max_sample_depth,
                 batch_size=256,
                 seed=0):
        """
        :param cfg: An nltk.CFG object
        :param min_sample_depth:
        :param max_sample_depth:
        :param batch_size:
        """
        super().__init__()
        random.seed(seed)
        self.cfg = cfg
        self.bsz = batch_size
        self.tokenizer = make_tokenizer(cfg)
        self.prod_map = make_prod_map(cfg)
        self.weighted_sampling = stgs.VAE_HPARAMS['weighted_sampling']
        self.temp = stgs.VAE_HPARAMS['temperature']
        self.min_sample_depth, self.max_sample_depth = min_sample_depth, max_sample_depth  # min and max lengths of the
        # sequences to sample
        if self.weighted_sampling:
            len_range = max_sample_depth - min_sample_depth
            self.probs = np.array([
                np.exp(self.temp * n / len_range)
                for n in range(min_sample_depth, max_sample_depth + 1)
            ])
            self.probs /= self.probs.sum()

        self.max_len = stgs.VAE_HPARAMS[
            'max_len']  # max possible length of a sequence
        self.lay_symb = stgs.VAE_HPARAMS[
            'layer_symbol']  # symbol representing a new layer
        self.n_chars = len(cfg.productions())
        print(f'Grammar with {self.n_chars} productions.')
        self.sents = []