Пример #1
0
def scc(G):
    """Strongly Connected Components"""
    G_reversed = DiGraph()

    for u in G.adj:
        for v in G.adj[u]:
            G_reversed.add_edge(v, u, attr=G.adj[u][v])

    # topologically high to low
    sorted_vertices = topological_sort(G)[::-1]

    groups = _scc(G_reversed, sorted_vertices)
    return groups
Пример #2
0
    def get_dfs_tree(self, property, node):
        if property not in self.properties:
            raise Exception(property + ' is not a SKOS property')
        di_graph = DiGraph()

        for s, p, o in self.vocab.triples(None, SKS[property], None):
            di_graph.add_edge(s, o)

        tree_edges = di_graph.dfs_tree(node)

        di_graph.clear()
        di_graph.add_edges_from(list(tree_edges))

        # label nodes with literals
        for n1, n2 in di_graph.edges():
            di_graph.nodes()[n1]['label'] = self.get_term_from_uri(n1)
            di_graph.nodes()[n2]['label'] = self.get_term_from_uri(n2)

        return di_graph
def adjust_route(topology, remove_file, routes, link_order):
    # get remove_links
    f = open(remove_file)
    links = []
    line = f.readline()
    while line:
        s = line.rstrip().split(' ')
        s = [int(i) for i in s]
        
        ls = s[0]
        ld = s[1]
        if ld < ls:
            tmp = ls
            ls = ld
            ld = tmp

        links.append((ls,ld))
        line = f.readline()
    f.close()

    # get final topology
    g = DiGraph()
    f = open(topology)
    line = f.readline()
    line = f.readline()
    while line:
        s = line.rstrip().split(' ')
        lls = int(s[0])
        lld = int(s[1])

        #g.add_nodes([int(s[0]), int(s[1])])
        g.add_edge(lls, lld, link_order[lls,lld][1] / link_order[lls,lld][0])
        g.add_edge(lld, lls, link_order[lls,lld][1] / link_order[lls,lld][0])

        line = f.readline()
    f.close()

    def sort_path(paths):
        for i in range(len(paths)):
            for j in range(i, len(paths)):
                if paths[i][1] < paths[j][1]:
                    tmp = paths[i]
                    paths[i] = paths[j]
                    paths[j] = tmp

    def calculate_cf(paths, link_order):
        for p in paths:
            cf = 100000
            for i in range(len(p[0]) - 1):
                tmp_cf = 0
                s = p[0][i]
                d = p[0][i+1]
                if s < d:
                    tmp_cf = link_order[s,d][0] / link_order[s,d][1]
                else:
                    tmp_cf = link_order[d,s][0] / link_order[d,s][1]
                if tmp_cf < cf:
                    cf = tmp_cf
            p[1] = cf
            sort_path(paths)

    for ls,ld in links:
        #print(ls,ld)
        for s,d in routes:
            route_paths = routes[s,d]

            remove_route = []
            remove_weight = 0
            for path, weight in route_paths:
                for i in range(len(path) - 1):
                    if (path[i] == ls and path[i+1] == ld) or (path[i] == ld and path[i+1] == ls):
                        remove_route.append([path, weight])
                        remove_weight += weight

                        # remove weight from all the link
                        for pi in range(len(path) - 1):
                            ps = path[pi]
                            pd = path[pi+1]
                            if pd < ps:
                                tmp = pd
                                pd = ps
                                ps = tmp

                            link_order[ps,pd][1] -= weight

                        break
            if remove_weight != 0:
                # Find k-shortest-paths between s,d
                tmp_paths = algorithms.ksp_yen(g, s, d, 20)
                yen_paths = [[yen_path['path'], 0, 0] for yen_path in tmp_paths]
                
                # make sure the proportion of every yen_path
                steps = 10.0
                gap = remove_weight / steps
                calculate_cf(yen_paths, link_order)
                for step in range(int(steps)):
                    for yi in range(len(yen_paths[0][0]) - 1):
                        ys = yen_paths[0][0][yi]
                        yd = yen_paths[0][0][yi + 1]
                        if yd < ys:
                            tmp = ys
                            ys = yd
                            yd = tmp
                        link_order[ys,yd][1] += gap
                    yen_paths[0][2] += 1 / steps
                    calculate_cf(yen_paths, link_order)

                # remain routes
                for rr in remove_route:
                    route_paths.remove(rr)

                # merge k-s-p into routes
                for yen_path, flows, proportion in yen_paths:
                    if proportion == 0:
                        continue

                    exist = False
                    for rp in route_paths:
                        if rp[0] == yen_path:
                            rp[1] += remove_weight * proportion
                            exist = True
                    if not exist:
                        route_paths.append([yen_path, remove_weight * proportion])

                routes[s,d] = route_paths
    
    return routes
def main():
    # Load the graph
    G = DiGraph("net5")

    # Get the painting object and set its properties.
    paint = G.painter()
    #paint.set_source_sink('ada', 'bob')
    paint.set_source_sink('s5', 's7')

    # load the graph dictionary
    das_ergebnis = joblib.load(
        "/Users/aditimiglani/Downloads/das_ergebnis.pkl")

    list_of_edges = das_ergebnis['edges']
    list_of_nodes = das_ergebnis['nodes']
    for edge in list_of_edges:
        source = str(edge['source'])
        target = str(edge['target'])
        load = float(edge['load'])
        G.add_edge(source, target, load)
        G.add_edge(target, source, load)

    #G.add_edge('ada', 'sue', 3)
    #G.add_edge('ada', 'john', 2)
    #G.add_edge('sue', 'bob', 1)
    #G.add_edge('a', 'b', 1)
    #G.add_edge('sue', 'john', 1)
    #G.add_edge('john', 'bob', 1)

    # Generate the graph using the painter we configured.
    G.export(False, paint)

    # Get 5 shortest paths from the graph.
    items = algorithms.ksp_yen(G, 's5', 's7', 5)
    all_paths = []
    #items = algorithms.ksp_yen(G, 'ada', 'bob', 5)
    for path in items:
        print "Cost:%s\t%s" % (path['cost'], "->".join(path['path']))
        all_paths.append(path['path'])

    print all_paths
    sub_das_ergebnis = {}
    sub_das_ergebnis['nodes'] = []
    sub_das_ergebnis['edges'] = []
    for sub_dict in list_of_nodes:
        for path in all_paths:
            for i in range(len(path)):
                if path[i] == sub_dict['id']:
                    if sub_dict not in sub_das_ergebnis['nodes']:
                        if i == 0 or i == len(path) - 1:
                            sub_dict['root'] = True
                            sub_das_ergebnis['nodes'].append(sub_dict)
                        else:
                            sub_dict['root'] = False
                            sub_das_ergebnis['nodes'].append(sub_dict)
    for sub_dict in list_of_edges:
        for path in all_paths:
            for i in range(len(path)):
                if i < len(path) - 1:
                    if (path[i] == sub_dict['source']
                            or path[i] == sub_dict['target']) and (
                                path[i + 1] == sub_dict['source']
                                or path[i + 1] == sub_dict['target']):
                        if sub_dict not in sub_das_ergebnis['edges']:
                            sub_das_ergebnis['edges'].append(sub_dict)

    joblib.dump(sub_das_ergebnis, 'sub_das_ergebnis.pkl')
    print sub_das_ergebnis
    print 'loading'
    loaded = joblib.load('sub_das_ergebnis.pkl')
    print loaded

    return 0
Пример #5
0
def main():
    G = DiGraph()
    undershorts = Node("undershorts")
    pants = Node("pants")
    belt = Node("belt")
    shirt = Node("shirt")
    tie = Node("tie")
    jacket = Node("jacket")
    socks = Node("socks")
    shoes = Node("shoes")
    watch = Node("watch")

    G.add_edge(shirt, belt)
    G.add_edge(shirt, tie)
    G.add_edge(tie, jacket)
    G.add_edge(belt, jacket)
    G.add_edge(pants, belt)
    G.add_edge(undershorts, shoes)
    G.add_edge(undershorts, pants)
    G.add_edge(pants, shoes)
    G.add_edge(socks, shoes)
    G.add_edge(watch, watch)

    vertices_sorted = topological_sort(G)
    # Can have more than 1 answers
    print(vertices_sorted)
Пример #6
0
# interstation cost (mins)
isc = 5
interrows = []
for stopA in fullStops:
    for stopB in fullStops:
        a, b = spsl(stopA)
        c, d = spsl(stopB)
        if (a == c and not (b == d)):
            interrows.append((stopA, stopB, isc))

GMaster = DiGraph('awesome')
for stop in fullStops:
    GMaster.add_node(stop)

for row in rows:
    GMaster.add_edge(row[0], row[1], row[2])

for irow in interrows:
    GMaster.add_edge(irow[0], irow[1], irow[2])

print "Calculate Routes..."

# Holds all routes in memory to aid filtering
fromToDict = {}

for stopFrom in fullStops:
    print "Currently working on:", stopFrom
    stA, t = spsl(stopFrom)
    G = copy.deepcopy(GMaster)
    distances, previous = algorithms.dijkstra(G, stopFrom)
Пример #7
0
                path_len = 0
                for path, weight in route_paths:
                    path_len += (len(path) - 1) * weight
                path_len_routes_base[(alpha, s, d)] = path_len

            g = DiGraph()
            f = open(final_topology)
            line = f.readline()
            length_graph = int(line.rstrip().split(' ')[0])
            line = f.readline()
            while line:
                s = line.rstrip().split(' ')
                lls = int(s[0])
                lld = int(s[1])

                g.add_edge(lls, lld, 1)
                g.add_edge(lld, lls, 1)

                line = f.readline()
            f.close()

            for n in range(length_graph):
                distances = dijkstra(g, length_graph, n)

                for key in distances:
                    if key == n:
                        continue
                    path_len_shortest[(alpha, n, key)] = distances[key]

            g = DiGraph()
            f = open(final_topology_base)
def GenerateGraph(person1,person2):
	person1_found = 'N'
	person2_found = 'N'

	#u'phillip.k': u's2625'
	print person1
	print person2
	try:
		node1 =person_node_mapping[person1.lower()]
		person1_found = 'Y'
	except:
		print "Person 1 Not found"
		node1 =u's78' #Janel Guerrero

	try:
		node2 =person_node_mapping[person2.lower()]
		person2_found = 'Y'
	except:
		print "Person 2 Not found"
		node2 = u's30018'

	
	G = DiGraph("net5")
	
	# Get the painting object and set its properties.
	paint = G.painter()
	#paint.set_source_sink('ada', 'bob')
	paint.set_source_sink(node1, node2)
	
	# load the graph dictionary

	list_of_edges = das_ergebnis['edges']
	list_of_nodes = das_ergebnis['nodes']
	for edge in list_of_edges:
	    source = str(edge['source'])
	    target = str(edge['target'])
	    load = float(edge['load'])
	    G.add_edge(source, target, load)
	    G.add_edge(target, source, load)

	#G.add_edge('ada', 'sue', 3)
	#G.add_edge('ada', 'john', 2)
	#G.add_edge('sue', 'bob', 1)
	#G.add_edge('a', 'b', 1)
	#G.add_edge('sue', 'john', 1)
	#G.add_edge('john', 'bob', 1)

	# Generate the graph using the painter we configured.
	#G.export(False, paint)
	
	# Get 5 shortest paths from the graph.
	items = algorithms.ksp_yen(G, node1, node2, 5)
	all_paths = []
	#items = algorithms.ksp_yen(G, 'ada', 'bob', 5)
	for path in items:
	    print "Cost:%s\t%s" % (path['cost'], "->".join(path['path']))
	    all_paths.append(path['path'])

	print all_paths
	sub_das_ergebnis = {}
	sub_das_ergebnis['nodes'] = []
	sub_das_ergebnis['edges'] = []
	for sub_dict in list_of_nodes:
	    for path in all_paths:
	        for i in range(len(path)):
	            if path[i] == sub_dict['id']:
	                if sub_dict not in sub_das_ergebnis['nodes']:
	                    if i == 0 or i == len(path) - 1:
	                        sub_dict['root'] = True
	                        sub_das_ergebnis['nodes'].append(sub_dict)
	                    else:
	                        sub_dict['root'] = False
	                        sub_das_ergebnis['nodes'].append(sub_dict)
	for sub_dict in list_of_edges:
	    for path in all_paths:
	        for i in range(len(path)):
	            if i < len(path)-1:
	                if (path[i] == sub_dict['source'] or path[i] == sub_dict['target']) and (path[i+1] == sub_dict['source'] or path[i+1] == sub_dict['target']):
	                    if sub_dict not in sub_das_ergebnis['edges']:
	                        sub_das_ergebnis['edges'].append(sub_dict)
				


	#joblib.dump(sub_das_ergebnis, 'sub_das_ergebnis.pkl')   
	nodes =sub_das_ergebnis['nodes']
	edges =sub_das_ergebnis['edges']


	node_list = []

	count =0
	for node in nodes:
		if node['caption'] in enron_table:
			word = enron_table[node['caption']][1]
			org = enron_table[node['caption']][0]
			node_list.append([word,org,node['id']])
			count+=1
		elif node['caption'] in other_org_table:
			word = other_org_table[node['caption']][1]
			org = other_org_table[node['caption']][0]
			node_list.append([word,org,node['id']])
			count+=1
		else:
			continue

	edge_list = []
	connection_exist =[]
	for edge in edges:
		source = edge['source']
		target = edge['target']
		value = edge['load']
		value = value/4
		value1 = int(value*10)
		value2 = int(value*200)
		connection_exist.append(edge['source'])
		connection_exist.append(edge['target'])

		edge_list.append([edge['source'],edge['target'],value1,value2])

	F = open("WorldCup2014.js","w")
	F.write("var nodes = [") 

	nodes =[]
	for node in node_list:
		num = 1
		if node[0] ==person1:
			num = 2
		if node[0] ==person2:
			num = 3

		string = "{id: " + str(node[2][1:]) + ", label: '" + str(node[0].title()) + "', value: " + str(20) +", group:  " + str(num)+"},"
		nodes.append(string)
		#print string
		F.write(string)

	F.write("];")
	F.write("var edges = [")
	edges =[]

	for edge in edge_list:
		string = "{from: %s, to: %s, value: %s, title: 'Relationship score: %s'}," %(edge[0][1:],edge[1][1:],edge[2],edge[3])
		edges.append(string)
		F.write(string)

	F.write("];")
	F.close()



	return nodes,edges
def adjust_route(topology, remove_file, routes, link_order):
    # get remove_links
    f = open(remove_file)
    links = []
    line = f.readline()
    while line:
        s = line.rstrip().split(' ')
        s = [int(i) for i in s]

        ls = s[0]
        ld = s[1]
        if ld < ls:
            tmp = ls
            ls = ld
            ld = tmp

        links.append((ls, ld))
        line = f.readline()
    f.close()

    # get final topology
    g = DiGraph()
    f = open(topology)
    line = f.readline()
    line = f.readline()
    while line:
        s = line.rstrip().split(' ')
        lls = int(s[0])
        lld = int(s[1])

        #g.add_nodes([int(s[0]), int(s[1])])
        g.add_edge(lls, lld, link_order[lls, lld][1] / link_order[lls, lld][0])
        g.add_edge(lld, lls, link_order[lls, lld][1] / link_order[lls, lld][0])

        line = f.readline()
    f.close()

    def sort_path(paths):
        for i in range(len(paths)):
            for j in range(i, len(paths)):
                if paths[i][1] < paths[j][1]:
                    tmp = paths[i]
                    paths[i] = paths[j]
                    paths[j] = tmp

    def calculate_cf(paths, link_order):
        for p in paths:
            cf = 100000
            for i in range(len(p[0]) - 1):
                tmp_cf = 0
                s = p[0][i]
                d = p[0][i + 1]
                if s < d:
                    tmp_cf = link_order[s, d][0] / link_order[s, d][1]
                else:
                    tmp_cf = link_order[d, s][0] / link_order[d, s][1]
                if tmp_cf < cf:
                    cf = tmp_cf
            p[1] = cf
            sort_path(paths)

    for ls, ld in links:
        #print(ls,ld)
        for s, d in routes:
            route_paths = routes[s, d]

            remove_route = []
            remove_weight = 0
            for path, weight in route_paths:
                for i in range(len(path) - 1):
                    if (path[i] == ls
                            and path[i + 1] == ld) or (path[i] == ld
                                                       and path[i + 1] == ls):
                        remove_route.append([path, weight])
                        remove_weight += weight

                        # remove weight from all the link
                        for pi in range(len(path) - 1):
                            ps = path[pi]
                            pd = path[pi + 1]
                            if pd < ps:
                                tmp = pd
                                pd = ps
                                ps = tmp

                            link_order[ps, pd][1] -= weight

                        break
            if remove_weight != 0:
                # Find k-shortest-paths between s,d
                tmp_paths = algorithms.ksp_yen(g, s, d, 20)
                yen_paths = [[yen_path['path'], 0, 0]
                             for yen_path in tmp_paths]

                # make sure the proportion of every yen_path
                steps = 10.0
                gap = remove_weight / steps
                calculate_cf(yen_paths, link_order)
                for step in range(int(steps)):
                    for yi in range(len(yen_paths[0][0]) - 1):
                        ys = yen_paths[0][0][yi]
                        yd = yen_paths[0][0][yi + 1]
                        if yd < ys:
                            tmp = ys
                            ys = yd
                            yd = tmp
                        link_order[ys, yd][1] += gap
                    yen_paths[0][2] += 1 / steps
                    calculate_cf(yen_paths, link_order)

                # remain routes
                for rr in remove_route:
                    route_paths.remove(rr)

                # merge k-s-p into routes
                for yen_path, flows, proportion in yen_paths:
                    if proportion == 0:
                        continue

                    exist = False
                    for rp in route_paths:
                        if rp[0] == yen_path:
                            rp[1] += remove_weight * proportion
                            exist = True
                    if not exist:
                        route_paths.append(
                            [yen_path, remove_weight * proportion])

                routes[s, d] = route_paths

    return routes
Пример #10
0
def test_dag_shortest_path():
    G = DiGraph()
    r = Node("r")
    s = Node("s")
    t = Node("t")
    x = Node("x")
    y = Node("y")
    z = Node("z")

    G.add_edge(r, s, w=5)
    G.add_edge(r, t, w=3)
    G.add_edge(s, x, w=6)
    G.add_edge(s, t, w=2)
    G.add_edge(t, x, w=7)
    G.add_edge(t, y, w=4)
    G.add_edge(t, z, w=2)
    G.add_edge(x, y, w=-1)
    G.add_edge(x, z, w=1)
    G.add_edge(y, z, w=-2)

    dag_shortest_path(G, s)

    assert [u.d for u in G.node] == [float('inf'), 0, 2, 6, 5, 3]
Пример #11
0
def test_bellman_ford():
    G = DiGraph()
    s = Node("s")
    t = Node("t")
    y = Node("y")
    x = Node("x")
    z = Node("z")

    G.add_edge(s, t, w=6)
    G.add_edge(s, y, w=7)
    G.add_edge(t, y, w=8)
    G.add_edge(t, x, w=5)
    G.add_edge(t, z, w=-4)
    G.add_edge(x, t, w=-2)
    G.add_edge(y, x, w=-3)
    G.add_edge(y, z, w=9)
    G.add_edge(z, x, w=7)
    G.add_edge(z, s, w=2)

    assert bellman_ford(G, s)
Пример #12
0
def test_dijkstra():
    G = DiGraph()
    s = Node("s")
    t = Node("t")
    y = Node("y")
    x = Node("x")
    z = Node("z")

    G.add_edge(s, t, w=10)
    G.add_edge(s, y, w=5)
    G.add_edge(t, y, w=2)
    G.add_edge(y, t, w=3)
    G.add_edge(t, x, w=1)
    G.add_edge(y, x, w=9)
    G.add_edge(y, z, w=2)
    G.add_edge(z, s, w=7)
    G.add_edge(z, x, w=6)
    G.add_edge(x, z, w=4)

    dijkstra(G, s)

    assert [u.d for u in G.node] == [0, 8, 5, 9, 7]
Пример #13
0
                path_len = 0
                for path, weight in route_paths:
                    path_len += (len(path) - 1) * weight
                path_len_routes_base[(alpha, s, d)] = path_len

            g = DiGraph()
            f = open(final_topology) 
            line = f.readline()
            length_graph = int(line.rstrip().split(' ')[0])
            line = f.readline()
            while line:
                s = line.rstrip().split(' ')
                lls = int(s[0])
                lld = int(s[1])

                g.add_edge(lls, lld, 1);
                g.add_edge(lld, lls, 1);

                line = f.readline()
            f.close()

            for n in range(length_graph):
                distances = dijkstra(g, length_graph, n)
                
                for key in distances:
                    if key == n:
                        continue
                    path_len_shortest[(alpha, n, key)] = distances[key]

            g = DiGraph()
            f = open(final_topology_base) 
Пример #14
0
def main():
    G = DiGraph()
    a = Node("a")
    b = Node("b")
    c = Node("c")
    d = Node("d")
    e = Node("e")
    f = Node("f")
    g = Node("g")
    h = Node("h")

    G.add_edge(a, b)
    G.add_edge(e, a)
    G.add_edge(b, e)
    G.add_edge(b, f)
    G.add_edge(b, c)
    G.add_edge(e, f)
    G.add_edge(f, g)
    G.add_edge(g, f)
    G.add_edge(c, g)
    G.add_edge(c, d)
    G.add_edge(d, c)
    G.add_edge(d, h)
    G.add_edge(g, h)
    G.add_edge(h, h)

    groups = scc(G)
    print(groups)