Пример #1
0
def test_symbol_ab(self,symbol, nf = 1):
    ## This function tests that the residuals behaves properly.
    ## That is, that the alpha (how we behave compared to the market)
    ## has a nice gaussian distribution.

    ## Slide 7

    index = self.Sindex  # The index
    sym_ret = self.pf.symbols[symbol].TDs[self.period].get_timeSeriesReturn()
    ind_ret = self.get_indexReturns()

    # Get coefficients for the symbol
    coeffs = self.get_symbol_ab(symbol)
    
    ##### GET THE RESIDUAL
    X = np.concatenate((np.ones((sym_ret.shape[0],1)),sym_ret),axis = 1) 
    pred = X.dot(np.array(coeffs))  # Pred = X * Phi
    pred = pred.reshape(pred.shape[0],1)

    residual = pred - ind_ret
    print "Mean of residual %f" % np.mean(residual)
    
    ### Now we test the residual
    print "Statistical test of residual"
    ttest = stats.ttest_1samp(a = residual,  # Sample data
                 popmean = 0)          # Pop mean
    print ttest
    ######## DOUBLE REGRESSION OF PAGE 7. Early empirical test
    Xres =  np.concatenate((ind_ret,np.power(residual,2)),axis = 1) 
    coeff = bMl.get_linearRef(Xres, sym_ret)
    print "Early empirical test of CAPM is wrong"
    print coeff

    hist, bin_edges = np.histogram(residual, density=True)
    gl.bar(bin_edges[:-1], hist, 
           labels = ["Distribution","Return", "Probability"],
           legend = [symbol],
           alpha = 0.5,
           nf = nf)
    
    ## Lets get some statistics using stats
    m, v, s, k = stats.t.stats(10, moments='mvsk')
    n, (smin, smax), sm, sv, ss, sk = stats.describe(residual)

    print "****** MORE STATISTIC ************"
    print "Mean " + str(sm)
    tt = (sm-m)/np.sqrt(sv/float(n))  # t-statistic for mean
    pval = stats.t.sf(np.abs(tt), n-1)*2  # two-sided pvalue = Prob(abs(t)>tt)
    print 't-statistic = %6.3f pvalue = %6.4f' % (tt, pval)
    return coeff
    for i in range(len(question_types)):
        question_types_ammount.append(
            np.where(question_types_list == i)[0].size)

    ## Normalize and order
    question_types_ammount, question_types_ordered = zip(
        *sorted(zip(question_types_ammount, question_types), reverse=True))
    question_types_ammount = np.array(question_types_ammount)
    question_types_ammount = question_types_ammount / np.sum(
        question_types_ammount)

    ## Do the actual plotting
    gl.init_figure()
    ax1 = gl.bar(
        question_types_ordered,
        question_types_ammount,
        align="center",
        labels=["Question Types Proportions SQUAD 1.1", "", "Proportion"])
    gl.set_fontSizes(ax=[ax1],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=10,
                     xticks=15,
                     yticks=15)
    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.30,
                       hspace=0.10)
Пример #3
0
def IFE_h(self, Rf=0, mktcap=[], year_start=1996, year_finish=2016, window=10):
    ## Black litterman question !!
    # The optimal portolio, lets say is the one given by Markovitz
    # mktcap is a dicktionary with the market capitalizaion of the equities
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))

    ## Get the actual stuff !!

    ExpRet = self.get_MeanReturns()
    Sigma = self.get_covMatrix()
    woptimal = self.TangentPortfolio()
    self.set_allocation(woptimal)
    R, S = self.get_metrics()
    delta = (R - self.Rf) / np.power(S, 2)  # Optimal risk adversion

    ## Get the weights by the market capitalization
    if (len(mktcap) > 0):
        weq = []
        for sym in self.symbol_names:
            weq.append(mktcap[sym])

        weq = ul.fnp(weq) / np.sum(weq)
        weq = weq.T.tolist()[0]
#        print weq
    else:

        weq = woptimal  # Initial prior
    ############### PUT FECKING BL prior instead ##########
    # Calculate initial portfolio from the market capitalization
    # Risk aversion of the market. We say it is the one of the portfolio
    # The optimal portfolio is the market.


#    weq = np.ones((1,self.Nsym))/self.Nsym
#    weq = weq.tolist()[0]
# Coefficient of uncertainty in the prior estimate of the mean
    tau = 10

    ### Prior of our Views !!!
    P1 = np.zeros((2, self.Nsym))
    P1[0, 0] = -1
    P1[0, 1] = 1
    P1[1, 1] = -1
    P1[1, 2] = 1
    P1 = ul.fnp(P1)

    # If we invert P1 and Q1 at the same time we get the same
    Q1 = [0.0002, 0.0001]
    Q1 = ul.fnp(Q1)

    Omega1 = np.dot(np.dot(P1, Sigma), P1.T) * np.eye(Q1.shape[0])

    postPi, weqpost = self.BlackLitterman(
        weq,
        Sigma,
        delta,  # Prior portfolio variables
        tau,  # Uncertainty coefficient of the porfolio priors
        P1,
        Q1,
        Omega1)  # Prior views variables

    # Reference returns of the portfolio of the market
    # They can just be calculated using the portfolio

    # A priory the expected return Posteriori does not have to be bigger
    # Just more accuarate to reality if our views are right :)
    refPi = delta * np.dot(Sigma, weq)

    Ereturn = np.dot(refPi, weq)
    EreturnPost = np.dot(postPi, weqpost)

    ## Plot the returns !!!
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
    gl.set_subplots(2, 3)
    gl.bar(self.pf.symbols.keys(), ExpRet, labels=["Optimal initial returns"])
    gl.bar(self.pf.symbols.keys(), refPi, labels=["Prior Returns"])
    gl.bar(self.pf.symbols.keys(), postPi, labels=["Posterior Returns"])

    #    gl.savefig(folder_images +'returnsBL.png',
    #               dpi = 150, sizeInches = [2*8, 2*6])

    ## Plot the weights !!!
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
    #    gl.set_subplots(1,3)

    gl.bar(self.pf.symbols.keys(), woptimal, labels=["Optimal intial weights"])
    gl.bar(self.pf.symbols.keys(), weq, labels=["Prior Weights"])
    gl.bar(self.pf.symbols.keys(), weqpost, labels=["Posterior Weights"])

    #    gl.savefig(folder_images +'weightsBL.png',
    #               dpi = 150, sizeInches = [2*8, 2*6])

    gl.savefig(folder_images + 'weightsreturnsBL.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    pass
Пример #4
0
def IFE_f2(self,
           ObjectiveRlist=[0.003],
           Rf=0.0,
           year_start=1996,
           year_finish=2016,
           window=10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio.
    # Do this for several years as well.

    self.set_Rf(Rf)

    All_returns = []
    All_vars = []

    windowslist = range(1, 13)
    ObjectiveR = 0.03
    for window in windowslist:
        PortfolioReturns = []
        all_dates = []
        for year_test in range(year_start,
                               year_finish - window + 1 - 1):  # +1 !!
            # Set the dates
            self.pf.set_interval(dt.datetime(year_test, 1, 1),
                                 dt.datetime(year_test + window, 1, 1))

            # Obtain the market line !!
            w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
            self.set_allocation(w)
            # Obtain the expected return and std when using all our money !
            expRet, stdRet = self.get_metrics(investRf="no")
            param = bMl.obtain_equation_line(Rf, expRet, stdRet)
            bias, slope = param
            X = (ObjectiveR - Rf) / (expRet - Rf)
            wdesired = w * X

            self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                                 dt.datetime(year_test + window + 1, 1, 1))
            self.set_allocation(wdesired)  # Set the allocation
            expRet, stdRet = self.get_metrics(
            )  # Get the expected return for that year
            PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
            PortfolioReturns.append(PortfolioRet)

            dates = self.get_dates()
            all_dates.append(dates[0])

        All_returns.append(np.mean(PortfolioReturns))
        All_vars.append(np.std(PortfolioReturns) / np.sqrt(np.sqrt(12 * 12)))


#    All_returns = np.array(All_returns).reshape(len(ObjectiveRlist),10)
#    print All_returns
    All_means = All_returns
    print All_returns
    #    All_means = np.mean(All_returns, axis = 1)
    print ul.fnp(All_returns).shape
    print All_means
    #    print All_means - ObjectiveRlist
    #    All_means = np.divide((All_means - ObjectiveRlist),ObjectiveRlist)
    #    print All_means
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(windowslist,
           All_means,
           labels=["Obtained returns", "Time (years)", "Return (%)"],
           legend=["Index Return"],
           alpha=0.8,
           nf=1)

    gl.plot(windowslist,
            All_vars,
            labels=["Obtained returns", "Time (years)", "Return (%)"],
            legend=["Index Return"],
            alpha=0.8,
            nf=0)

    gl.savefig(folder_images + 'best_Objective.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])
Пример #5
0
def IFE_f(self,
          ObjectiveR=0.003,
          Rf=0.0,
          year_start=1996,
          year_finish=2016,
          window=10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio.
    # Do this for several years as well.
    self.set_Rf(Rf)

    nf_flag = 1

    All_stds = []
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    for year_test in range(year_start, year_finish - window + 1 - 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        self.set_allocation(w)
        # Obtain the expected return and std when using all our money !
        expRet, stdRet = self.get_metrics(investRf="no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
        X = (ObjectiveR - Rf) / (expRet - Rf)
        wdesired = w * X

        ## Check that the output of this portfolio is the desired one.
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics(
        )  # Get the expected return for that year

        #        print ret
        ## Now that we have the desired w*X, we will calculate the resturn of
        ## the portfolio in the following year.
        # To do so, we set the dates, only to the next year, set the portfolio allocation
        # And calculate the yearly expected return !!

        # Set the dates to only the next year !!
        # Also, one month before in order to get the returns of the first month.
        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics(
        )  # Get the expected return for that year
        PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
        PortfolioReturns.append(PortfolioRet)

        All_stds.append(self.yearly_covMatrix(stdRet))

        indexRet = self.get_indexMeanReturn()
        indexRet = self.yearly_Return(indexRet)
        IndexReturns.append(indexRet)

        #        dates = self.get_dates()
        all_dates.append(year_test + window + 1)

        ## Graph with the evolutio of the portfolio price after the assignment
        gl.plot(range(1, 13),
                np.cumsum(self.get_PortfolioReturn()),
                nf=nf_flag,
                labels=[
                    "Evolution of returns by month", "Months passed",
                    "Cumulative Return"
                ],
                legend=[str(year_test + window + 1)])
        nf_flag = 0


#        print ret

    gl.savefig(folder_images + 'returnsEvolMonth.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(all_dates[:],
           IndexReturns,
           labels=["Obtained returns", "Time (years)", "Return (%)"],
           legend=["Index Return"],
           alpha=0.8,
           nf=1)
    gl.bar(all_dates[:],
           PortfolioReturns,
           labels=["Returns of year", "Year", "Value"],
           legend=["Porfolio Return"],
           alpha=0.8,
           nf=0)

    gl.scatter(all_dates[:],
               self.yearly_Return(ObjectiveR) * np.ones(
                   (len(all_dates[:]), 1)),
               legend=["Objective Return"],
               nf=0)

    gl.scatter(all_dates[:],
               All_stds,
               legend=["Std of the portfolio return"],
               nf=0)

    gl.savefig(folder_images + 'returnsEvolYears.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    #### Crazy idea !! Lets plot where the f*****g efficient frontier went
    nf_flag = 1
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    gl.set_subplots(2, 3)
    for year_test in range(year_start, year_start + 6):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))
        optimal, portfolios = self.efficient_frontier(kind="Tangent")
        self.plot_allocations(
            portfolios,
            labels=["Evolution of the efficient frontier"],
            legend=["Frontier " + str(year_test + window) + " before"],
            color="k",
            nf=1)

        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        self.set_allocation(self.TangentPortfolio(Rf=Rf))
        self.plot_allocations(
            portfolios,
            legend=["Frontier " + str(year_test + window) + " after"],
            color="r",
            nf=0)

    gl.savefig(folder_images + 'effEvol.png',
               dpi=80,
               sizeInches=[4 * 8, 3 * 6])
Пример #6
0
def IFE_e(self,
          ObjectiveR=0.003,
          Rf=0.0,
          year_start=1996,
          year_finish=2016,
          window=10):
    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then, using also the last year ( test), recalculate the portfolio needed
    # for that return, and the difference between is the turnover
    self.set_Rf(Rf)

    nf_flag = 1
    desired_Portfolios = []
    all_dates = []
    for year_test in range(year_start, year_finish - window + 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        # Obtain the expected return and std when using all our money !
        self.set_allocation(w)
        expRet, stdRet = self.get_metrics(investRf="no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param

        # Once we have the equation of the line, we obtain how much money
        # we need to use to reach the desired Expecred Return.
        # Rt = (1 - X)Rf + XRp with X = sum(w)
        # For a desired Rt we solve the X

        X = (ObjectiveR - Rf) / (expRet - Rf)

        #        print X
        # So the desired porfolio is:
        wdesired = w * X
        desired_Portfolios.append(wdesired)

        gl.plot([0, 1.3 * abs(X * stdRet)],
                [bias, bias + 1.3 * abs(slope * stdRet * X)],
                labels=["Desired Portfolios", "Risk (std)", "Return (%)"],
                legend=["%s, X: %0.3f" % ((year_test + window), X[0])],
                nf=nf_flag,
                loc=2)
        nf_flag = 0
        gl.scatter([abs(X * stdRet)], [ObjectiveR], nf=0)

        dates = self.get_dates()
        all_dates.append(dates[-1])


#        print wdesired

    gl.savefig(folder_images + 'desiredPortfolios.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    # Now we calculate the turnovers
    Turnovers = []
    prev_abs_alloc = []  # Previous, absolute allocation
    percentaje_changed = []
    Nport = len(desired_Portfolios)

    for i in range(Nport - 1):
        to = bMl.get_TurnOver(desired_Portfolios[i], desired_Portfolios[i + 1])
        Turnovers.append(to)
        prev_abs_alloc.append(np.sum(np.abs(desired_Portfolios[i])))
        percentaje_changed.append(Turnovers[-1] / prev_abs_alloc[-1])
        print Turnovers

    gl.set_subplots(1, 3)

    gl.bar(all_dates[1:],
           Turnovers,
           color="g",
           labels=["Portfolio turnovers", "Year", "Value"])

    gl.add_text([all_dates[1:][3], max(Turnovers) * 0.80],
                "Mean: %0.2f" % np.mean(Turnovers), 30)

    gl.bar(all_dates[0:-1],
           prev_abs_alloc,
           color="r",
           labels=["Absolute allocations", "Year", "Value"])

    gl.bar(all_dates[1:],
           percentaje_changed,
           color="b",
           labels=["Percentage turnover", "Year", "Value"])

    gl.add_text(
        [all_dates[1:][3], max(percentaje_changed) * 0.80],
        "Mean: %0.2f" % np.mean(percentaje_changed), 30)

    gl.savefig(folder_images + 'turnovers.png',
               dpi=150,
               sizeInches=[2 * 8, 1 * 6])
            legend =  ["price"], 
            ws = ws,
            color = "red",
            nf = 0)
            
            
    timeSeries = timeData.get_timeSeries(["Volume"]);
#    gl.step(timeData.dates,timeSeries, 
#            legend =  ["price"], 
#            ws = ws,
#            color = "red",
#            nf = 0, na = 1, fill = 1)
            
    gl.bar(dates,timeSeries, 
            legend =  ["price"], 
            ws = ws,
            color = "red",
            nf = 0, na = 1)
            
    gl.add_slider(args = {"wsize":ws}, plots_affected = [])
    gl.add_hidebox()
    
    list_values = []
    gl.add_selector(list_values)
    gl.add_onKeyPress()
#    type(timeData.TD.index)
#    cad = pd.DataFrame(index = time_index)
#    caca = pd.to_datetime(time_index.T.tolist())
#    print caca
#    
Пример #8
0
def IFE_h (self, Rf = 0, mktcap = [], year_start = 1996, year_finish = 2016, window = 10):
    ## Black litterman question !!
    # The optimal portolio, lets say is the one given by Markovitz
    # mktcap is a dicktionary with the market capitalizaion of the equities
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    
    ## Get the actual stuff !!

    ExpRet = self.get_MeanReturns()
    Sigma = self.get_covMatrix()
    woptimal = self.TangentPortfolio()
    self.set_allocation(woptimal)
    R,S = self.get_metrics()
    delta = (R - self.Rf)/np.power(S,2)  # Optimal risk adversion
    
    
    ## Get the weights by the market capitalization
    if (len(mktcap) > 0):
        weq = []
        for sym in self.symbol_names:
            weq.append(mktcap[sym])
        
        weq = ul.fnp(weq) /np.sum(weq)
        weq = weq.T.tolist()[0]
#        print weq
    else:
        
        weq = woptimal  # Initial prior
    ############### PUT FECKING BL prior instead ##########
    # Calculate initial portfolio from the market capitalization
    # Risk aversion of the market. We say it is the one of the portfolio
    # The optimal portfolio is the market.
#    weq = np.ones((1,self.Nsym))/self.Nsym
#    weq = weq.tolist()[0]
    # Coefficient of uncertainty in the prior estimate of the mean
    tau = 10
    
    ### Prior of our Views !!!
    P1 = np.zeros((2,self.Nsym))
    P1[0,0] = -1; P1[0,1] =  1
    P1[1,1] = -1; P1[1,2] =  1
    P1 = ul.fnp(P1)
    
    # If we invert P1 and Q1 at the same time we get the same
    Q1 = [0.0002, 0.0001]
    Q1 = ul.fnp(Q1)
    
    Omega1 = np.dot(np.dot(P1,Sigma),P1.T) * np.eye(Q1.shape[0])
    
    postPi,weqpost = self.BlackLitterman(weq, Sigma, delta, # Prior portfolio variables
                   tau,              # Uncertainty coefficient of the porfolio priors
                   P1, Q1, Omega1)   # Prior views variables
    
    # Reference returns of the portfolio of the market
    # They can just be calculated using the portfolio
      
    # A priory the expected return Posteriori does not have to be bigger
    # Just more accuarate to reality if our views are right :)
    refPi = delta * np.dot(Sigma, weq)  
      
    Ereturn = np.dot(refPi,weq)
    EreturnPost = np.dot(postPi,weqpost)
    

    ## Plot the returns !!! 
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
    gl.set_subplots(2,3)
    gl.bar(self.pf.symbols.keys(),ExpRet,
           labels = ["Optimal initial returns"])    
    gl.bar(self.pf.symbols.keys(),refPi,
             labels = ["Prior Returns"])
    gl.bar(self.pf.symbols.keys(),postPi,
             labels = ["Posterior Returns"])

#    gl.savefig(folder_images +'returnsBL.png', 
#               dpi = 150, sizeInches = [2*8, 2*6])
               
    ## Plot the weights !!! 
    # We will plot the real w returns, the Pi Returns, and the Post- Returns
#    gl.set_subplots(1,3)
    
    gl.bar(self.pf.symbols.keys(),woptimal,
           labels = ["Optimal intial weights"])
    gl.bar(self.pf.symbols.keys(),weq,
             labels = ["Prior Weights"])
    gl.bar(self.pf.symbols.keys(),weqpost,
             labels = ["Posterior Weights"])
             
#    gl.savefig(folder_images +'weightsBL.png', 
#               dpi = 150, sizeInches = [2*8, 2*6])
               
    gl.savefig(folder_images +'weightsreturnsBL.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
               
    pass
Пример #9
0
def IFE_f2 (self, ObjectiveRlist = [0.003], Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio. 
    # Do this for several years as well.

    self.set_Rf(Rf)
    
    All_returns  = []
    All_vars = []
    
    windowslist = range(1,13)
    ObjectiveR = 0.03
    for window in windowslist:
        PortfolioReturns = []
        all_dates = []
        for year_test in range(year_start,year_finish - window + 1 - 1): # +1 !!
            # Set the dates
            self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
            
            # Obtain the market line !!
            w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
            self.set_allocation(w)
            # Obtain the expected return and std when using all our money !
            expRet, stdRet = self.get_metrics (investRf = "no")
            param = bMl.obtain_equation_line(Rf, expRet, stdRet)
            bias, slope = param
            X = (ObjectiveR - Rf)/(expRet - Rf)
            wdesired = w*X
    
            self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
            self.set_allocation(wdesired)  # Set the allocation
            expRet, stdRet = self.get_metrics()  # Get the expected return for that year
            PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
            PortfolioReturns.append(PortfolioRet)
            
            dates = self.get_dates()
            all_dates.append(dates[0])
        
        All_returns.append(np.mean(PortfolioReturns))
        All_vars.append(np.std(PortfolioReturns)/np.sqrt(np.sqrt(12*12)))
#    All_returns = np.array(All_returns).reshape(len(ObjectiveRlist),10)
#    print All_returns
    All_means = All_returns
    print All_returns
#    All_means = np.mean(All_returns, axis = 1)
    print ul.fnp(All_returns).shape
    print All_means
#    print All_means - ObjectiveRlist
#    All_means = np.divide((All_means - ObjectiveRlist),ObjectiveRlist)
#    print All_means
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(windowslist, All_means, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 1)

    gl.plot(windowslist, All_vars, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 0)
            
    gl.savefig(folder_images +'best_Objective.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
Пример #10
0
def IFE_f (self, ObjectiveR = 0.003, Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio. 
    # Do this for several years as well.
    self.set_Rf(Rf)
    
    nf_flag = 1
    
    All_stds = []
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    for year_test in range(year_start,year_finish - window + 1 - 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        self.set_allocation(w)
        # Obtain the expected return and std when using all our money !
        expRet, stdRet = self.get_metrics (investRf = "no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
        X = (ObjectiveR - Rf)/(expRet - Rf)
        wdesired = w*X

        ## Check that the output of this portfolio is the desired one.
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics()  # Get the expected return for that year
       
#        print ret 
        ## Now that we have the desired w*X, we will calculate the resturn of
        ## the portfolio in the following year.
        # To do so, we set the dates, only to the next year, set the portfolio allocation
        # And calculate the yearly expected return !!

        # Set the dates to only the next year !!
        # Also, one month before in order to get the returns of the first month.
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics()  # Get the expected return for that year
        PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
        PortfolioReturns.append(PortfolioRet)
        
        All_stds.append(self.yearly_covMatrix(stdRet))
        
        indexRet = self.get_indexMeanReturn()
        indexRet = self.yearly_Return(indexRet)
        IndexReturns.append(indexRet)
        
#        dates = self.get_dates()
        all_dates.append(year_test + window + 1)
        
        ## Graph with the evolutio of the portfolio price after the assignment
        gl.plot(range(1,13), np.cumsum(self.get_PortfolioReturn()),
                nf = nf_flag, 
                labels = ["Evolution of returns by month", "Months passed", "Cumulative Return"],
                legend = [str(year_test + window +1)])
        nf_flag = 0
#        print ret

    gl.savefig(folder_images +'returnsEvolMonth.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
    
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(all_dates[:], IndexReturns, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 1)
    gl.bar(all_dates[:], PortfolioReturns, 
           labels = ["Returns of year", "Year","Value"],
            legend = ["Porfolio Return"],
            alpha = 0.8,
            nf = 0)
            
    gl.scatter(all_dates[:], self.yearly_Return(ObjectiveR) * np.ones((len(all_dates[:]),1)), 
            legend = ["Objective Return"],
            nf = 0)

    gl.scatter(all_dates[:], All_stds, 
            legend = ["Std of the portfolio return"],
            nf = 0)
            
    gl.savefig(folder_images +'returnsEvolYears.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

    #### Crazy idea !! Lets plot where the f*****g efficient frontier went 
    nf_flag = 1
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    gl.set_subplots(2,3)
    for year_test in range(year_start,year_start + 6): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        optimal, portfolios = self.efficient_frontier(kind = "Tangent")
        self.plot_allocations(portfolios, labels = ["Evolution of the efficient frontier"],
                              legend = ["Frontier " + str(year_test + window) + " before"], color = "k", nf = 1)
 
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
        self.set_allocation(self.TangentPortfolio(Rf = Rf))
        self.plot_allocations(portfolios, legend = ["Frontier " + str(year_test + window) + " after"], color = "r",nf = 0)
        
    gl.savefig(folder_images +'effEvol.png', 
               dpi = 80, sizeInches = [4*8, 3*6])
Пример #11
0
def IFE_e (self, ObjectiveR = 0.003, Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then, using also the last year ( test), recalculate the portfolio needed
    # for that return, and the difference between is the turnover
    self.set_Rf(Rf)

    nf_flag = 1
    desired_Portfolios = []
    all_dates = []
    for year_test in range(year_start,year_finish - window + 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        # Obtain the expected return and std when using all our money !
        self.set_allocation(w)
        expRet, stdRet = self.get_metrics (investRf = "no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
    
        # Once we have the equation of the line, we obtain how much money
        # we need to use to reach the desired Expecred Return.
        # Rt = (1 - X)Rf + XRp with X = sum(w)
        # For a desired Rt we solve the X

        X = (ObjectiveR - Rf)/(expRet - Rf)
        
#        print X
        # So the desired porfolio is:
        wdesired = w*X
        desired_Portfolios.append(wdesired)
        
        gl.plot([0,1.3*abs(X*stdRet)],[bias, bias + 1.3*abs(slope*stdRet*X)],
            labels = ["Desired Portfolios", "Risk (std)", "Return (%)"],
            legend = ["%s, X: %0.3f" %((year_test + window ), X[0])],
            nf = nf_flag, loc = 2)
        nf_flag = 0
        gl.scatter([abs(X*stdRet)],[ObjectiveR],
            nf = 0)


        dates = self.get_dates()
        all_dates.append(dates[-1])
#        print wdesired

    gl.savefig(folder_images +'desiredPortfolios.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

    # Now we calculate the turnovers 
    Turnovers = []
    prev_abs_alloc = []  # Previous, absolute allocation
    percentaje_changed = []
    Nport = len(desired_Portfolios)
    
    for i in range(Nport-1):
        to = bMl.get_TurnOver(desired_Portfolios[i], desired_Portfolios[i+1])
        Turnovers.append(to)
        prev_abs_alloc.append(np.sum(np.abs(desired_Portfolios[i])))
        percentaje_changed.append(Turnovers[-1]/prev_abs_alloc[-1])
        print Turnovers
    
    gl.set_subplots(1,3)
    
    gl.bar(all_dates[1:], Turnovers, color = "g",
           labels = ["Portfolio turnovers", "Year","Value"])
    
    gl.add_text([all_dates[1:][3],max(Turnovers)*0.80], 
                 "Mean: %0.2f" % np.mean(Turnovers), 30)

    gl.bar(all_dates[0:-1], prev_abs_alloc, color = "r",
           labels = ["Absolute allocations", "Year","Value"])
    
    gl.bar(all_dates[1:], percentaje_changed,  color = "b",
           labels = ["Percentage turnover", "Year","Value"])
    
    gl.add_text([all_dates[1:][3],max(percentaje_changed)*0.80], 
                 "Mean: %0.2f" % np.mean(percentaje_changed), 30)

    gl.savefig(folder_images +'turnovers.png', 
               dpi = 150, sizeInches = [2*8, 1*6])
Пример #12
0
            N_IDLE.append(0)
            for trailerid in different_trailers:
                if (np.mean((registers_day[registers_day["EquipmentItemId"] ==
                                           trailerid])["IDLE"]) == 1):
                    N_IDLE[-1] = N_IDLE[-1] + 1
#        gl.step(days, N_IDLE, legend = ["IDLE Trailers"], alpha = 0.5, fill = 1, labels = ["Usage of Trailers","",DifferenOC[j]])
#        gl.step(days, N_trucks, legend = ["Total Trailers"], nf = 0, alpha = 0.5, fill = 1)
#
        propor_IDLE = np.sum(N_IDLE) / float(np.sum(N_trucks))
        IDLE_prop.append(propor_IDLE)

#    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.20, hspace=0)

#        caca = ["d","df","d","$","f"]
    gl.bar(DifferenOC.tolist(),
           IDLE_prop,
           labels=["Proportion of IDLE Trailers", "",
                   "Proportion"])  # DifferenOC.tolist()
    #TODO: Gang number 99403034 29103929
Nregion = DifferenOC.size

precompute_trailers_IDLE = 0
if (precompute_trailers_IDLE):
    total_days_onhire = 0
    total_onhire = 0
    list_IDLE = []
    Nregion = DifferenOC.size
    list_IDLE_Regions = [
    ]  # Nregions x Ndays x Trailers that are IDLE the whole day bitch
    list_days = []  # Nregions x Ndays
    list_OSH_Regions = []
    for j in range(Nregion):  #Nregion
Пример #13
0
    #    gl.plot_wid(timeData.get_dates(), timeSeries, scrolling = 200)

    ws = 50
    gl.step(dates, timeSeries, legend=["price"], ws=ws)

    timeSeries = timeData.get_timeSeries(["Low"])
    gl.step(dates, timeSeries, legend=["price"], ws=ws, color="red", nf=0)

    timeSeries = timeData.get_timeSeries(["Volume"])
    #    gl.step(timeData.dates,timeSeries,
    #            legend =  ["price"],
    #            ws = ws,
    #            color = "red",
    #            nf = 0, na = 1, fill = 1)

    gl.bar(dates, timeSeries, legend=["price"], ws=ws, color="red", nf=0, na=1)

    gl.add_slider(args={"wsize": ws}, plots_affected=[])
    gl.add_hidebox()

    list_values = []
    gl.add_selector(list_values)
    gl.add_onKeyPress()
#    type(timeData.TD.index)
#    cad = pd.DataFrame(index = time_index)
#    caca = pd.to_datetime(time_index.T.tolist())
#    print caca
#

#    ld = CGraph()
#    ld = copy.copy(gl)
Пример #14
0
    eu_dist = hf.get_doc_sims(All_bow, BoW)

    best_common, best_common_i = uf.sort_and_get_order(eu_dist[:-1].tolist(),
                                                       reverse=False)
    #    print best_common_i[:5]
    #    print dict_files
    #    plt.close("all")
    gl.set_subplots(1, 3)
    for i in range(3):
        BoW_values = All_bow[str(best_common_i[i])].values
        BoW_index = All_bow.index
        Nwords = 30
        b_v, b_vi = uf.sort_and_get_order(BoW_values, reverse=True)
        gl.bar(BoW_index[b_vi[0:Nwords]].tolist(),
               BoW_values[b_vi[0:Nwords]],
               legend=[dict_files[best_common_i[i]].split("/")[-1]],
               labels=["", "", "Num"],
               nf=1)

    ## Get the BoW of the most common:
plotting_thins = 0
if (plotting_thins == 1):
    query_dirs = ["./books/0/Winchester", "Yorkshire Battles"]
    query_dirs = ["1342-0.txt", "11-0.txt"]
    labels = [
        "Pride and Prejudice", "Alice's Adventures in Wonderland",
        "Trading Book"
    ]

    gl.set_subplots(3, 1)
    for i in range(3):