Пример #1
0
def generate_networkx_graphs(rand, num_examples, num_nodes_min_max, theta):
    """Generate graphs for training.

  Args:
    rand: A random seed (np.RandomState instance).
    num_examples: Total number of graphs to generate.
    num_nodes_min_max: A 2-tuple with the [lower, upper) number of nodes per
      graph. The number of nodes for a graph is uniformly sampled within this
      range.
    theta: (optional) A `float` threshold parameters for the geographic
      threshold graph's threshold. Default= the number of nodes.

  Returns:
    input_graphs: The list of input graphs.
    target_graphs: The list of output graphs.
    graphs: The list of generated graphs.
  """
    input_graphs = []
    target_graphs = []
    graphs = []
    for _ in range(num_examples):
        graph = generate_graph(rand, num_nodes_min_max, theta=theta)[0]
        graph = add_shortest_path(rand, graph)
        input_graph, target_graph = graph_to_input_target(graph)
        input_graphs.append(input_graph)
        target_graphs.append(target_graph)
        graphs.append(graph)
    return input_graphs, target_graphs, graphs
Пример #2
0
def generate_graphs(img_path, solution_path, region, j, placeholder=False):
    img = imageio.imread(img_path)
    img_solution = imageio.imread(solution_path)

    img = np.array(img)
    img_solution = np.array(img_solution)
    img_subsample = img[::2, ::2]
    img_solution_subsample = img_solution[::2, ::2]

    images = slice_blocks(img_subsample, 128, 128)
    #images = add_arrays(images, slice_blocks(img, 128, 128))

    images_solutions = slice_blocks(img_solution_subsample, 128, 128)
    images_solutions = add_arrays(images_solutions,
                                  slice_blocks(img_solution, 128, 128))
    # if placeholder == True:
    #    index = j * 4096 - 1
    #   j2 = j + 1

    # else:
    #
    # j2 = 1

    graphs = []
    # iterace radky a sloupce
    for i in range(len(images)):
        index = 0 * 4096 - 1
        graph = nx.Graph()
        for row in range(0, 128):
            for column in range(0, 128):
                index += 1

                node_solution = 0
                value = images[i][row][column] / 255
                if images_solutions[i][row][column] == 255:
                    node_solution = 1
                    # pridani uzlu
                graph.add_node(index, value=value, solution=node_solution)
                # pridani hran
                add_edges_to_graph(index, graph, img, row, column, region,
                                   images_solutions[i])
        graphs.append(graph)
    return graphs
Пример #3
0
def generate_networkx_graphs(graphcache,all_db,rand,num_examples,dataset):
    """Generate graphs for training.
 
    Args:
        rand: A random seed (np.RandomState instance).
        num_examples: Total number of graphs to generate.
        dataset: 'train', 'val', 'test'
    Returns:
        input_graphs: The list of input graphs.
        target_graphs: The list of output graphs.
        graphs: The list of generated graphs.
    """
    input_graphs = []
    target_graphs = []
    graphs = []
    
    totnum = len(all_db[dataset])
    if totnum==num_examples:
        selids = np.arange(totnum)
    else:
        selids = rand.choice(totnum,num_examples)
    for ni in range(num_examples):
        #print(all_db[dataset][selids[ni]])
        if dataset == 'test':
            tt = True
            da = False
        elif dataset == 'val':
            tt = False
            da = False
        else:
            tt = False
            da = True
        graph = generate_graph(graphcache,all_db[dataset][selids[ni]],rand,data_aug=da,test=tt)
        #graph = add_shortest_path(rand, graph)
        input_graph, target_graph = graph_to_input_target(graph)
        input_graphs.append(input_graph)
        target_graphs.append(target_graph)
        graphs.append(graph)
    return input_graphs, target_graphs, graphs, selids