Пример #1
0
def visualize(pathFinder, source=False, target=False):
    g, weight = buildWeightedGraph(pathFinder)
    ecolor = g.new_edge_property("string")
    ewidth = g.new_edge_property("double")
    ewidth.a = 1
    touch_v = g.new_vertex_property("bool")
    touch_e = g.new_edge_property("bool")
    if not source:
        source = pathFinder.source
    if not target:
        target = pathFinder.target
    dist, pred = gt.astar_search(g, source, weight,
                                 VisitorExample(touch_v, touch_e, target),       
                                 heuristic=lambda v: pathFinder.jaccard(v, target))
    for e in g.edges():
        ecolor[e] = "blue" if touch_e[e] else "black"
    v = target
    while v != source:
        p = g.vertex(pred[v])
        for e in v.out_edges():
            if e.target() == p:
                ecolor[e] = "#a40000"
                ewidth[e] = 3
        v = p
    gt.graph_draw(g, output_size=(600, 600), vertex_fill_color=touch_v, edge_color=ecolor,
                  edge_pen_width=ewidth, output="astar-demo.pdf")
Пример #2
0
def path(pathFinder):
    """Computes the astar path if it exists in the given PathFinder class"""
    G = pathFinder.getGraph()
    target = pathFinder.target
    source = pathFinder.source
    try:
        if pathExists(pathFinder):
            G, weight = buildWeightedGraph(pathFinder)
            #for vertex in G.vertices():
            #    print (vertex)
            touch_v = G.new_vertex_property("bool")
            touch_e = G.new_edge_property("bool")
            dist, pred = gt.astar_search(
                G,
                source,
                weight,
                VisitorExample(touch_v, touch_e, target),
                heuristic=lambda v: pathFinder.jaccard(v, target))
            #print ([pred])
            return [pred]
            #return list(nx.all_simple_paths(G,0,1,cutoff=8))
        else:
            return None

    except:
        logger.error(sys.exc_info())
        return None
Пример #3
0
def visualize(pathFinder, source=False, target=False):
    g, weight = buildWeightedGraph(pathFinder)
    ecolor = g.new_edge_property("string")
    ewidth = g.new_edge_property("double")
    ewidth.a = 1
    touch_v = g.new_vertex_property("bool")
    touch_e = g.new_edge_property("bool")
    if not source:
        source = pathFinder.source
    if not target:
        target = pathFinder.target
    dist, pred = gt.astar_search(
        g,
        source,
        weight,
        VisitorExample(touch_v, touch_e, target),
        heuristic=lambda v: pathFinder.jaccard(v, target))
    for e in g.edges():
        ecolor[e] = "blue" if touch_e[e] else "black"
    v = target
    while v != source:
        p = g.vertex(pred[v])
        for e in v.out_edges():
            if e.target() == p:
                ecolor[e] = "#a40000"
                ewidth[e] = 3
        v = p
    gt.graph_draw(g,
                  output_size=(600, 600),
                  vertex_fill_color=touch_v,
                  edge_color=ecolor,
                  edge_pen_width=ewidth,
                  output="astar-demo.pdf")
Пример #4
0
    def get_route(self, src, tgt):  # astar search

        src_node = self.graph.vertex(src)
        tgt_node = self.graph.vertex(tgt)
        dists = self.graph.ep["weight"]

        dist_map, pred_map = gt.astar_search(self.graph,
                                             source=src_node,
                                             weight=dists)
        min_dist = np.inf

        node_order = [int(src)]
        if dist_map[tgt] < min_dist:
            node_order.extend(
                self.reconstruct_path(src_node, tgt_node, pred_map))

        return node_order
Пример #5
0
def pathLength(pathFinder):
    """Checks the length of a path if it exists in the given PathFinder class"""
    G = pathFinder.getGraph()
    target = pathFinder.target
    source = pathFinder.source
    try:
        if pathExists(pathFinder):
            G, weight = buildWeightedGraph(pathFinder)
            touch_v = G.new_vertex_property("bool")
            touch_e = G.new_edge_property("bool")
            dist, pred = gt.astar_search(G, source, weight,
                                 VisitorExample(touch_v, touch_e, target),
                                 heuristic=lambda v: pathFinder.jaccard(v, target))
            return dist
        else:
            return None
    except:
        logger.error (sys.exc_info())
        return None
Пример #6
0
def pathLength(pathFinder):
    """Checks the length of a path if it exists in the given PathFinder class"""
    G = pathFinder.getGraph()
    target = pathFinder.target
    source = pathFinder.source
    try:
        if pathExists(pathFinder):
            G, weight = buildWeightedGraph(pathFinder)
            touch_v = G.new_vertex_property("bool")
            touch_e = G.new_edge_property("bool")
            dist, pred = gt.astar_search(
                G,
                source,
                weight,
                VisitorExample(touch_v, touch_e, target),
                heuristic=lambda v: pathFinder.jaccard(v, target))
            return dist
        else:
            return None
    except:
        logger.error(sys.exc_info())
        return None
Пример #7
0
def astar(
    G: Graph,
    source: int,
    target: int,
    edge_attribute: EdgePropertyMap,
    heuristic,
    pos: np.ndarray,
) -> np.ndarray:
    """
    Perform A* with given heuristic
    Args:
        G: graph
        source: start vertex
        target: end vertex (search terminates here)
        edge_attribute: the edge attribute that defines the cost of an edge
        heuristic: a function that underestimates the distance from any vertex to the target
        pos: positional attribute for vertices
    Returns: a list of vertices from the source to the target
    """
    # run A*
    pred = astar_search(
        G,
        weight=edge_attribute,
        source=source,
        visitor=RouteVisitor(target),
        heuristic=lambda v: heuristic(v, target, pos),
    )[1]

    # backtrack through the graph to the source
    route = []
    v = target
    while v != source:
        if v == pred[v]:
            raise Exception("The start is not connected to the target")
        route.append(v)
        v = G.vertex(pred[v])
    route.append(v)
    return route
Пример #8
0
def path(pathFinder):
    """Computes the astar path if it exists in the given PathFinder class"""
    G = pathFinder.getGraph()
    target = pathFinder.target
    source = pathFinder.source
    try:
        if pathExists(pathFinder):
            G, weight = buildWeightedGraph(pathFinder)
            #for vertex in G.vertices():
            #    print (vertex)
            touch_v = G.new_vertex_property("bool")
            touch_e = G.new_edge_property("bool")
            dist, pred = gt.astar_search(G, source, weight,
                                 VisitorExample(touch_v, touch_e, target),       
                                 heuristic=lambda v: pathFinder.jaccard(v, target))
            #print ([pred])
            return [pred]
            #return list(nx.all_simple_paths(G,0,1,cutoff=8))
        else:
            return None
        
    except:
        logger.error (sys.exc_info())
        return None
Пример #9
0
def useGraphTool(pd):
    # Extract the graphml representation of the planner data
    graphml = pd.printGraphML()
    f = open("graph.graphml", 'w')
    f.write(graphml)
    f.close()

    # Load the graphml data using graph-tool
    graph = gt.load_graph("graph.graphml", fmt="xml")
    edgeweights = graph.edge_properties["weight"]

    # Write some interesting statistics
    avgdeg, stddevdeg = gt.vertex_average(graph, "total")
    avgwt, stddevwt = gt.edge_average(graph, edgeweights)

    print("---- PLANNER DATA STATISTICS ----")
    print(
        str(graph.num_vertices()) + " vertices and " + str(graph.num_edges()) +
        " edges")
    print("Average vertex degree (in+out) = " + str(avgdeg) + "  St. Dev = " +
          str(stddevdeg))
    print("Average edge weight = " + str(avgwt) + "  St. Dev = " +
          str(stddevwt))

    _, hist = gt.label_components(graph)
    print("Strongly connected components: " + str(len(hist)))

    # Make the graph undirected (for weak components, and a simpler drawing)
    graph.set_directed(False)
    _, hist = gt.label_components(graph)
    print("Weakly connected components: " + str(len(hist)))

    # Plotting the graph
    gt.remove_parallel_edges(graph)  # Removing any superfluous edges

    edgeweights = graph.edge_properties["weight"]
    colorprops = graph.new_vertex_property("string")
    vertexsize = graph.new_vertex_property("double")

    start = -1
    goal = -1

    for v in range(graph.num_vertices()):
        # Color and size vertices by type: start, goal, other
        if pd.isStartVertex(v):
            start = v
            colorprops[graph.vertex(v)] = "cyan"
            vertexsize[graph.vertex(v)] = 10
        elif pd.isGoalVertex(v):
            goal = v
            colorprops[graph.vertex(v)] = "green"
            vertexsize[graph.vertex(v)] = 10
        else:
            colorprops[graph.vertex(v)] = "yellow"
            vertexsize[graph.vertex(v)] = 5

    # default edge color is black with size 0.5:
    edgecolor = graph.new_edge_property("string")
    edgesize = graph.new_edge_property("double")
    for e in graph.edges():
        edgecolor[e] = "black"
        edgesize[e] = 0.5

    # using A* to find shortest path in planner data
    if start != -1 and goal != -1:
        _, pred = gt.astar_search(graph, graph.vertex(start), edgeweights)

        # Color edges along shortest path red with size 3.0
        v = graph.vertex(goal)
        while v != graph.vertex(start):
            p = graph.vertex(pred[v])
            for e in p.out_edges():
                if e.target() == v:
                    edgecolor[e] = "red"
                    edgesize[e] = 2.0
            v = p

    pos = graph.new_vertex_property("vector<double>")
    for v in range(graph.num_vertices()):
        vtx = pd.getVertex(v)
        st = vtx.getState()
        pos[graph.vertex(v)] = [st[0], st[1]]

    # Writing graph to file:
    # pos indicates the desired vertex positions, and pin=True says that we
    # really REALLY want the vertices at those positions
    # gt.graph_draw(graph, pos=pos, vertex_size=vertexsize, vertex_fill_color=colorprops,
    #               edge_pen_width=edgesize, edge_color=edgecolor,
    #               output="graph.pdf")
    gt.graph_draw(graph, pos=pos, output="graph.pdf")
    print('\nGraph written to graph.pdf')

    graph.vertex_properties["pos"] = pos
    graph.vertex_properties["vsize"] = vertexsize
    graph.vertex_properties["vcolor"] = colorprops
    graph.edge_properties["esize"] = edgesize
    graph.edge_properties["ecolor"] = edgecolor

    graph.save("mgraph.graphml")
    print('\nGraph saved to mgraph.graphml')
Пример #10
0
def useGraphTool(pd, space):
    # Extract the graphml representation of the planner data
    graphml = pd.printGraphML()
    f = open("graph.xml", 'w')
    f.write(graphml)
    f.close()

    # Load the graphml data using graph-tool
    graph = gt.load_graph("graph.xml")
    edgeweights = graph.edge_properties["weight"]

    # Write some interesting statistics
    avgdeg, stddevdeg = gt.vertex_average(graph, "total")
    avgwt, stddevwt = gt.edge_average(graph, edgeweights)

    print "---- PLANNER DATA STATISTICS ----"
    print str(graph.num_vertices()) + " vertices and " + str(graph.num_edges()) + " edges"
    print "Average vertex degree (in+out) = " + str(avgdeg) + "  St. Dev = " + str(stddevdeg)
    print "Average edge weight = " + str(avgwt)  + "  St. Dev = " + str(stddevwt)

    comps, hist = gt.label_components(graph)
    print "Strongly connected components: " + str(len(hist))

    graph.set_directed(False)  # Make the graph undirected (for weak components, and a simpler drawing)
    comps, hist = gt.label_components(graph)
    print "Weakly connected components: " + str(len(hist))

    # Plotting the graph
    gt.remove_parallel_edges(graph) # Removing any superfluous edges

    edgeweights = graph.edge_properties["weight"]
    colorprops = graph.new_vertex_property("string")
    vertexsize = graph.new_vertex_property("double")

    start = -1
    goal = -1

    for v in range(graph.num_vertices()):

        # Color and size vertices by type: start, goal, other
        if (pd.isStartVertex(v)):
            start = v
            colorprops[graph.vertex(v)] = "cyan"
            vertexsize[graph.vertex(v)] = 10
        elif (pd.isGoalVertex(v)):
            goal = v
            colorprops[graph.vertex(v)] = "green"
            vertexsize[graph.vertex(v)] = 10
        else:
            colorprops[graph.vertex(v)] = "yellow"
            vertexsize[graph.vertex(v)] = 5

    # default edge color is black with size 0.5:
    edgecolor = graph.new_edge_property("string")
    edgesize = graph.new_edge_property("double")
    for e in graph.edges():
        edgecolor[e] = "black"
        edgesize[e]  = 0.5

    # using A* to find shortest path in planner data
    if start != -1 and goal != -1:
        dist, pred = gt.astar_search(graph, graph.vertex(start), edgeweights)

        # Color edges along shortest path red with size 3.0
        v = graph.vertex(goal)
        while v != graph.vertex(start):
            p = graph.vertex(pred[v])
            for e in p.out_edges():
                if e.target() == v:
                    edgecolor[e] = "red"
                    edgesize[e]  = 2.0
            v = p

    # Writing graph to file:
    # pos indicates the desired vertex positions, and pin=True says that we
    # really REALLY want the vertices at those positions
    gt.graph_draw (graph, vertex_size=vertexsize, vertex_fill_color=colorprops,
                   edge_pen_width=edgesize, edge_color=edgecolor,
                   output="graph.png")
    print
    print 'Graph written to graph.png'
Пример #11
0
    def find_path(self, startLat, startLon, endLat, endLon, mode):
        self.__log("Find path request! ")
        if self.gr.num_vertices() == 0:
            self.gr.load(self.graphFileName)
            self.__log("Graph loaded")
        else:
            self.__log("Graph already in memory")

        start = self.__getNode(startLat, startLon)
        end = self.__getNode(endLat, endLon)

        #         start = self.__getNode(41.8880107, 12.5219164)
        #         end = self.__getNode(41.8887613, 12.5203503)

        if start.graphid != None:
            startAddedToGraph = False
            startVertex = self.gr.vertex(start.graphid)
        else:
            startAddedToGraph = True
            startVertex = self.__insert_vertex(start)

        if end.graphid != None:
            endAddedToGraph = False
            endVertex = self.gr.vertex(end.graphid)
        else:
            endAddedToGraph = True
            endVertex = self.__insert_vertex(end)
        self.__log("Start = %d, end = %d  founds" % (start.id, end.id))

        if mode == "shortest":
            weightPropToUse = self.gr.edge_properties['euclidean']
            euclidean = True
        elif mode == "less_effort":
            weightPropToUse = self.gr.edge_properties['effort']
            euclidean = False
        else:
            self.__log("Mode unknown", logTime=False)
            return

        _, pred = gt.astar_search(
            self.gr,
            startVertex,
            weightPropToUse,
            Visitor(endVertex),
            heuristic=lambda v: self.__heuristic(v, endVertex, euclidean))
        self.__log("A* terminated")

        if pred[endVertex] == int(endVertex):
            self.__log("Failed!!", logTime=False)
            return

        v = endVertex
        path = [self.gr.vertex_properties['osmid'][v]]
        while v != startVertex:
            v = self.gr.vertex(pred[v])
            path.append(self.gr.vertex_properties['osmid'][v])
        path = list(reversed(path))
        print path
        path = completePath(path)
        self.__log("Path completed")
        if endAddedToGraph:
            self.gr.clear_vertex(endVertex)
            self.gr.remove_vertex(endVertex)
        if startAddedToGraph:
            self.gr.clear_vertex(startVertex)
            self.gr.remove_vertex(startVertex)
        return path
Пример #12
0
    def find_path(self, startLat, startLon, endLat, endLon, mode):
        self.__log("Find path request! ")
        if self.gr.num_vertices() == 0:
            self.gr.load(self.graphFileName)
            self.__log("Graph loaded")
        else:
            self.__log("Graph already in memory")
        
        start = self.__getNode(startLat,startLon)
        end = self.__getNode(endLat,endLon)
        
#         start = self.__getNode(41.8880107, 12.5219164)
#         end = self.__getNode(41.8887613, 12.5203503)
        
        if start.graphid != None:
            startAddedToGraph = False
            startVertex = self.gr.vertex(start.graphid)
        else: 
            startAddedToGraph= True
            startVertex = self.__insert_vertex(start)
         
        if end.graphid != None:
            endAddedToGraph = False
            endVertex = self.gr.vertex(end.graphid)
        else: 
            endAddedToGraph = True
            endVertex = self.__insert_vertex(end)           
        self.__log("Start = %d, end = %d  founds" %(start.id,end.id))
           
        if mode == "shortest":
            weightPropToUse = self.gr.edge_properties['euclidean']
            euclidean = True
        elif mode == "less_effort":
            weightPropToUse = self.gr.edge_properties['effort']
            euclidean = False
        else:
            self.__log("Mode unknown", logTime=False)
            return
            

        _, pred = gt.astar_search(self.gr, startVertex, 
                weightPropToUse,
                Visitor(endVertex),
                heuristic=lambda v: self.__heuristic(v, endVertex, euclidean))
        self.__log("A* terminated")
            
        if pred[endVertex] == int(endVertex):
            self.__log("Failed!!", logTime=False)
            return
        
        v = endVertex
        path = [self.gr.vertex_properties['osmid'][v]]
        while v != startVertex:
            v = self.gr.vertex(pred[v])
            path.append(self.gr.vertex_properties['osmid'][v])
        path = list(reversed(path))
        print path
        path = completePath(path)
        self.__log("Path completed")
        if endAddedToGraph:
            self.gr.clear_vertex(endVertex)
            self.gr.remove_vertex(endVertex)
        if startAddedToGraph:
            self.gr.clear_vertex(startVertex)
            self.gr.remove_vertex(startVertex)
        return path
Пример #13
0
            if (dq < 2) and (dt < np.pi / 8):
                path_exists = True
                q_final = nearest.reshape(-1, 1)

    if min_coord is not None:
        cg.add_vertex(min_coord, min_cost)
        cg.add_edge(parent_coord, min_coord, min_move_cost)

fig = plt.figure()
ax = fig.add_subplot(111)
ax = env.plot_environment(ax, [])

src = cg.get_node(q_init)
tgt = cg.get_node(q_final)

dist, pred = gt.astar_search(cg.g, src, weight=cg.g.ep["cost"])

prev_node = tgt
while prev_node != src:
    q0 = cg.g.vp["pos"][prev_node][:2]
    theta = cg.g.vp["pos"][prev_node][2]
    r0 = 2 * np.array([np.cos(theta), np.sin(theta)])
    ax.plot(*q0, "k.")
    ax.plot([q0[0], q0[0] + r0[0]], [q0[1], q0[1] + r0[1]], "k-")
    prev_node = cg.g.vertex(pred[prev_node])

ax.plot(np.block(cg.node_coords)[0, :], np.block(cg.node_coords)[1, :], "bo")
ax.plot(*cg.g.vp["pos"][src][:2], "ko")
ax.plot(*cg.g.vp["pos"][tgt][:2], "kx")
plt.show()
Пример #14
0
                ]
                shapeprops[graph.vertex(v)] = "circle"

        # default edge color is black with size 0.5:
        edgecolor = graph.new_edge_property("string")
        edgecolor2 = graph.new_edge_property("vector<float>")
        edgesize = graph.new_edge_property("double")
        for e in graph.edges():
            edgecolor[e] = "black"
            #            edgecolor2[e]= [158.0/255.0, 217.0/255.0, 207.0/255.0, 1.0]
            edgecolor2[e] = [110.0 / 255.0, 115.0 / 255.0, 116.0 / 255.0, 1.0]
            edgesize[e] = 0.5

        # using A* to find shortest path in planner data
        if False and start != -1 and goal != -1:
            _, pred = gt.astar_search(graph, graph.vertex(start), edgeweights)

            # Color edges along shortest path red with size 3.0
            v = graph.vertex(goal)
            while v != graph.vertex(start):
                p = graph.vertex(pred[v])
                for e in p.out_edges():
                    if e.target() == v:
                        edgecolor[e] = "red"
                        edgesize[e] = 2.0
                v = p

        pos = graph.new_vertex_property("vector<double>")
        for v in range(graph.num_vertices()):
            vtx = pd.getVertex(v)
            st = vtx.getState()
Пример #15
0
    venice_weight = g.new_edge_property("double")
    # paretnza 45.43988044474121   12.339807563546461
    # arrivo 45.43170127993013 12.325036058157616
    #coord_source = [12.339807563546461, 45.43988044474121]
    #coord_target = [12.325036058157616, 45.431701279930130]
    latlon = g.vertex_properties['latlon']
    # source = find_vertex(g, latlon, coord_source)
    # target = find_vertex(g, latlon, coord_target)
    # print(f'Source {source}')
    # print(f'Target {target}')
    source = g.vertex(25)
    target = g.vertex(100)

    dist, pred = gt.astar_search(g,
                                 source,
                                 venice_weight,
                                 VeniceResident(g, touch_v, touch_e, target,
                                                venice_weight),
                                 heuristic=lambda v: h(v, target, pos))
    # implicit=True
    ecolor = g.new_edge_property("string")
    ewidth = g.new_edge_property("double")
    ewidth.a = 1

    for e in g.edges():
        ecolor[e] = "#3465a4" if touch_e[e] else "#d3d7cf"

    v = target

    while v != source:
        p = g.vertex(pred[v])
        for e in v.out_edges():