Пример #1
0
def run_motif_significance(graph,
                           directed=True,
                           data_loc="../data/",
                           motif_size=3,
                           n_shuffles=16,
                           s_model='uncorrelated'):
    """Run z-score computation for all `motif_size` subgraph
    on the given `graph`. By default, graph is loaded as a directed graph_tool
    instance.
    Parameters
    ==========
        graph: name of the graph file."""
    f_name = data_loc + graph + ".edges"
    g = load_graph_from_csv(f_name,
                            directed,
                            csv_options={
                                'quotechar': '"',
                                'delimiter': ' '
                            })
    m, z = motif_significance(g, motif_size, n_shuffles, shuffle_model=s_model)
    motif_annotation = str(motif_size) + 'm' if directed else str(
        motif_size) + 'um'
    output_name = "{}{}_{}.{}".format(data_loc, graph, motif_annotation,
                                      "motifslog")
    return write_motifs_results(output_name, m, z, n_shuffles, s_model)
Пример #2
0
def main():
    with open("/home/usr8/15M54097/motifwalk/data/youtube_gt.data", "rb") as f:
        ytgt = pickle.load(f)
    yt_motif4_results = motif_significance(ytgt,
                                           k=4,
                                           n_shuffles=10,
                                           full_output=True)
    with open("./youtube_motif_results.pkl", "wb") as f:
        pickle.dump(yt_motif4_results, f)
    return 0
Пример #3
0
def motifs(g: Graph, k: int = 3):
    return clustering.motif_significance(g, k)