Пример #1
0
 def graph(self):
     if type(self.funct) == type(Function('')):
         graph(self.funct)
     elif type(self.funct) == type(Equation('')):
         graph(self.funct[1])
     else:
         graph_par(self.funct)
Пример #2
0
    def do_POST(self):
        content_length = int(self.headers['Content-Length'])
        body = self.rfile.read(content_length)
        self.send_response(200)
        self.end_headers()

        with open(file_path, "wb") as file:
            file.write(body)

        grapher.graph(file_path, output_path)

        with open(output_path, "rb") as file:
            self.wfile.write(file.read())

        print(time.now().time(), "-> Success at ip:", self.client_address[0])
Пример #3
0
def graph(xText, yText, regression, regBox): 
	#print(len(xText) ,len(yText) )
	if (len(regression) == 0):
		tk.messagebox.showerror("Error", "Pick a regression type")
		return
	if (len(xText) != len(yText)) or len(xText) == 0:
		tk.messagebox.showerror("Error,", "Missing points")
		return
	print("Graphing " + str(len(xText))+ " data points")
	graph = grapher.graph(len(xText))
	graph.numberOfPoints = len(xText)
	for i in range(len(xText)):
		try:
			graph.points[i,0] = float(xText[i])	
		except ValueError:
				tk.messagebox.showerror("Error", "All points must be numbers")
				return
		try:
			graph.points[i,1] = float(yText[i])
		except ValueError:
			tk.messagebox.showerror("Error", "All points must be numbers")
			return
	graph.regression = regression[0]+1
	#print(graph.regression)
	graph.coefficients = graph.polyFit(graph.regression)
	# print(graph.calculatedFunction(2))
	print(graph.points[:,1])
	print(graph.rSquaredCalculate())
	regBox.configure(text = graph.polyLabel())
	graph.execute()
	return
Пример #4
0
def update_graph(name):
    person = name
    words_me, words_you = words_used(data[person.replace(" ", "_")], name_fix)
    times_info, msgs_info_first_me, msgs_info_last_me, msgs_info_last_you, msgs_info_first_you = ms.get_msgs_time(
        save[person.replace(" ", "_")])
    fig4 = graph(words_me, words_you, person)
    fig6 = ms.plot_overtime(times_info, 2)

    return fig4, fig6, msgs_info_last_me, msgs_info_last_you, msgs_info_first_me, msgs_info_first_you
Пример #5
0
def graph(request, city1, city2, field):
    template = loader.get_template('graph/graph.html')
    graph_html = grapher.graph(city1, city2, field)
    if (graph_html == None):
        return redirect('/graph/')
    graph_html = urllib.urlopen(graph_html).read()
    context = {
        "graph_html": graph_html,
        "city1": city1,
        "city2": city2,
        "field": field,
    }
    return HttpResponse(template.render(context, request))
Пример #6
0
def prepare_graph(regression_type):
    xPoints = Data.query.with_entities(Data.xValues)
    yPoints = Data.query.with_entities(Data.yValues)
    xPoints = [x for x, in xPoints]
    yPoints = [y for y, in yPoints]
    if len(xPoints) <= regression_type:
        print('error points regression_type')
        raise ValueError('Not enough points for regression')
    graph = gr.graph(len(xPoints))
    graph.numberOfPoints = len(xPoints)
    for i in range(len(xPoints)):
        graph.points[i, 0] = xPoints[i]
        graph.points[i, 1] = yPoints[i]
    graph.regression = regression_type
    graph.coefficients = graph.polyFit(graph.regression)
    function = graph.getCoeff()
    rSquared = graph.rSquaredCalculate()
    #print(function)
    #print(rSquared)
    #return graph.graphToHtml()
    return graph.graphToHtml(), function, rSquared
Пример #7
0
import math
import sys

import grapher

points_input = sorted(
    points_input,
    key=lambda x: x[1])  # sort points by y coordinates from least to greatest
dimensions = (
    sorted(points_input, key=lambda x: x[0])[-1][0], points_input[-1][1]
)  # (max_x, max_y) = (sort by x then grab last (largest) x value, take y-sorted list and grab last (largest) value)
point_vectors = []

precision = 2

grapher.graph(points_input)
print("")


def dist(point1, point2):
    # euclidean distance formula d = √((ay-by)^2+(ax-bx)^2)
    return round(
        math.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2),
        precision)


def heading(point1, point2, dist):
    if not dist: return 0
    elif point2[0] == point1[0]: return int(not (point2[1] > point1[1])) * 180
    elif point2[1] == point1[1]:
        return int(not (point2[0] > point1[0])) * 180 + 90
Пример #8
0
import classifier
import neuralpy
import grapher

net = neuralpy.Network(2, 8, 1)

uris = [ "miller_xml/" + str(i) + ".xml" for i in range(1,13) ]

epochs = 200
learning_rate = 0.05

validation_percentage = .32

ps = []

classifier.stand = "L"

for i in range(0, 10):
	net.randomize_parameters()
	p = classifier.train(net, uris, epochs, learning_rate, validation_percentage, save_file='results/miller_' + str(i) + '.txt')
	neuralpy.output(p)
	ps.append(p)


i = ps.index(max(ps))
neuralpy.output("\n\n" + str(max(ps)) + " at " + str(i))

grapher.graph(filepath='results/miller_' + str(i) + '.txt')


# grapher.graph(filepath='results/miller_4.txt')
Пример #9
0
points_input = [[3,10],[8,1],[3,5],[1,4],[8,10],[4,5]]

### Begin code

import math
import sys

import grapher

points_input = sorted(points_input, key=lambda x: x[1])                                     # sort points by y coordinates from least to greatest
dimensions = (sorted(points_input, key=lambda x: x[0])[-1][0] , points_input[-1][1])        # (max_x, max_y) = (sort by x then grab last (largest) x value, take y-sorted list and grab last (largest) value)
point_vectors = []

precision = 2

grapher.graph(points_input)
print("")


def dist(point1, point2):
    # euclidean distance formula d = √((ay-by)^2+(ax-bx)^2)
    return round(math.sqrt((point1[0]-point2[0])**2+(point1[1]-point2[1])**2), precision)

def heading(point1, point2, dist):
    if not dist: return 0
    elif point2[0] == point1[0]: return int(not (point2[1] > point1[1]))*180
    elif point2[1] == point1[1]: return int(not (point2[0] > point1[0]))*180+90
    else:
        return round(math.degrees(math.cos((point2[0]-point1[0])/dist)))

Пример #10
0
import grapher

grapher.graph(None, f="test.txt")
Пример #11
0
# counts number of true and false values
Accurate_Predicted_Total = compared["Match"].value_counts()
# calculates actual/experimental %
Accurate_Predicted_Total["Actual Percentage"] = (
    Accurate_Predicted_Total["True"] / compared["Index"].max()) * 100

# grabs theoretical % from score variable above
Accurate_Predicted_Total["Theoretical Percentage"] = score * 100
# calculates percent error (actual-theoretical)/theoretical
# NOTE: any value of absolute value should bre read as positive even if negative
Accurate_Predicted_Total["Percent Error"] = (
    ((score * 100) -
     (Accurate_Predicted_Total["True"] / compared["Index"].max()) * 100) /
    (score * 100)) * 100
Accurate_Predicted_Total["Percent Error"] = math.fabs(
    Accurate_Predicted_Total["Percent Error"])
Accurate_Predicted_Total.to_csv(path_or_buf="data/ml/stats/Keystats.csv")

from grapher import graph
graph()

import pickle

pkl_filename = "pickle_model.pkl"
with open(pkl_filename, 'wb') as file:
    pickle.dump(clf, file)

# loading data
# with open(pkl_filename, 'rb') as file:
#     pickle_model = pickle.load(file)