def __init__(self, state={}): if 'nearest_neighbors_model' not in state: state['nearest_neighbors_model'] = None assert (isinstance(state['nearest_neighbors_model'], _gl.nearest_neighbors.NearestNeighborsModel)) self.__proxy__ = _PythonProxy(state)
def __init__(self, state={}): if 'nearest_neighbors_model' not in state: state['nearest_neighbors_model'] = None if state['nearest_neighbors_model'] and not isinstance(state['nearest_neighbors_model'], _gl.nearest_neighbors._nearest_neighbors.NearestNeighborsModel): raise TypeError("The internal nearest neighbors model for LocalOutlierFactorModel is not correct.") self.__proxy__ = _PythonProxy(state)
def _setup(self): """ Sets up the model; common between __init__ and load. """ self.__proxy__ = _PythonProxy() #Try importing spacy if SpacyTransformer._nlp is None: SpacyTransformer._nlp = _import_spacy()
def __init__(self, state={}): if 'nearest_neighbors_model' in state: model = state['nearest_neighbors_model'] else: model = None assert (isinstance(model, _gl.nearest_neighbors.NearestNeighborsModel)) if model.get("distance") == "dot_product": raise _ToolkitError("%s is not a supported distance function for " \ "the NearestNeighborAutoTagger. Use %s " \ "instead." % ("dot_product", "cosine")) if model.get("distance") == "transformed_dot_product": raise _ToolkitError("%s is not a supported distance function for " \ "the NearestNeighborAutoTagger. Use %s " \ "instead." % ("transformed_dot_product", "cosine")) self.__proxy__ = _PythonProxy(state)
def _setup(self): self.__proxy__ = _PythonProxy()
def _setup(self): """ Sets stuff up. """ self.__proxy__ = _PythonProxy()
def __init__(self, state=None): if state is None: state = {} self.__proxy__ = _PythonProxy(state)
def __init__(self, state): self.__proxy__ = _PythonProxy(state)