Пример #1
0
    def geodesic_patch(self,point,r,k=7,return_mask=False):
        """ Computes a geodesic patch around a specified point.

            Parameters
            ----------
            point : int or (1,3) float array
                A mesh vertex.
            r : float
                Radius used to build patch.
            k : int, default is 7
                Number of nearest neighbors to use.
            return_mask : boolean, default is False
                If True, return the patch as a (num,verts,) boolean array

            Returns
            -------
            An int array containing the patch point indices.
        """

        if np.any(self.knn_I) is None or np.any(self.knn_J) is None or np.any(self.knn_D) is None:
            self.knn_I,self.knn_J,self.knn_D = gl.knnsearch(self.points,20)
        I = self.knn_I[:,:k]
        J = self.knn_J[:,:k]
        D = self.knn_D[:,:k]
        W = gl.dist_matrix(I,J,D,k)
        W = gl.sparse_max(W,W.transpose())

        point_ind = self.get_index(point)
        dist = gl.cDijkstra(W,np.array([point_ind]),np.array([0]))
        mask = dist < r

        if return_mask:
            return mask.astype(int)
        else: #return indices
            return np.arange(self.num_verts())[mask]
def build_graph(X, k=10):
    #Build graph
    I, J, D = gl.knnsearch(X, k)
    W = gl.weight_matrix(I, J, D, k)
    W = gl.diag_multiply(W, 0)
    if not gl.isconnected(W):
        print('Warning: Graph not connected')
    return W
Пример #3
0
    def edge_points(self,u,k=7,return_mask=False,number=None):
        """ Computes the edge points of the mesh.

            Parameters
            ----------
            u : (num_verts,1) int array
                Array of labels for each point.
            k : int, default is 7
                Number of nearest neighbors to use.
            return_mask : boolean, default is False
                If True, return edge_points as a (num,verts,) boolean array.
            number : int, default is None
                Max number of edge points to return.

            Returns
            -------
            An int array containing the edge point indices.
        """

        if np.any(self.knn_I) is None or np.any(self.knn_J) is None or np.any(self.knn_D) is None:
            self.knn_I,self.knn_J,self.knn_D = gl.knnsearch(self.points,20)
        I = self.knn_I[:,:k]
        J = self.knn_J[:,:k]
        D = self.knn_D[:,:k]
        W = gl.weight_matrix(I,J,D,k,f=lambda x : np.ones_like(x),symmetrize=False)
        d = gl.degrees(W)
        mask = d*u != W@u

        #Select a few points spaced out along edge
        if number is not None:
            edge_ind = np.arange(self.num_verts())[mask]
            edge_points = self.points[mask,:]
            num_edge_points = len(edge_points)

            #PCA
            mean = np.mean(edge_points,axis=0)
            cov = (edge_points-mean).T@(edge_points-mean)
            l,v = sparse.linalg.eigs(cov,k=1,which='LM')
            proj = (edge_points-mean)@v.real

            #Sort along princpal axis
            sort_ind = np.argsort(proj.flatten())
            dx = (num_edge_points-1)/(number-1)
            spaced_edge_ind = edge_ind[sort_ind[np.arange(0,num_edge_points,dx).astype(int)]]
            mask = np.zeros(self.num_verts(),dtype=bool)
            mask[spaced_edge_ind]=True

        if return_mask:
            return mask.astype(int)
        else: #return indices
            return np.arange(self.num_verts())[mask]
Пример #4
0
#Demonstration of semi-supervised learning
import numpy as np
import graphlearning as gl
import matplotlib.pyplot as plt
import sklearn.datasets as datasets

#data
n = 500
X, L = datasets.make_moons(n_samples=n, noise=0.1)

#Build graph
k = 10
I, J, D = gl.knnsearch(X, k)
W = gl.weight_matrix(I, J, D, k)

#Randomly choose labels
m = 5  #5 labels per class
ind = gl.randomize_labels(L, m)  #indices of labeled points

#Semi-supervised learning
l = gl.graph_ssl(W, ind, L[ind], method='laplace')

#Compute accuracy
acc = gl.accuracy(l, L, m)
print("Accuracy=%f" % acc)

#Plot result (red points are labels)
plt.scatter(X[:, 0], X[:, 1], c=l)
plt.scatter(X[ind, 0], X[ind, 1], c='r')
plt.show()
Пример #5
0
        balance = True
    else:
        balance = False
    #allbreak contains all the categorical data of avaliable break curves
    allbreak = Loaddata(xls_name, variable_name)
    #cleandata is all the converted(numerical) data of break curves
    #classtype is a list that keeps all the class names
    cleandata, classtype = balancing_converting(allbreak, balance)
    cleandata, label = numerical_Label(cleandata, classtype)
    cleandata = np.array(cleandata)
    label = np.array(label)
    print(cleandata[0])
    print(label[500:1000])
    #Build graph
    k = 500
    I, J, D = gl.knnsearch(cleandata, k)
    W = gl.weight_matrix(I, J, D, k)

    #Randomly choose labels
    m = 5  #5 labels per class
    ind = gl.randomize_labels(label, m)  #indices of labeled points

    #Semi-supervised learning
    l = gl.graph_ssl(W, ind, label[ind], method='Laplace')

    #Compute accuracy
    acc = gl.accuracy(l, label, m)
    print("Accuracy=%f" % acc)
    '''
    #xtrain,ytrain is training data, xtest contains label of bones, be careful
    xtrain,xtest,ytrain,ytest=split(cleandata,split_percentage)
Пример #6
0
def ComputeKNN(dataset, metric='L2', k=30, knn_method='annoy', scatter_pca_dims=100):

    if metric == "scatter_pca":
        outfile = "kNNData/"+dataset+"_"+metric + "_" + str(scatter_pca_dims) + ".npz"
    else:
        outfile = "kNNData/"+dataset+"_"+metric+".npz"

    #For variational autoencoder the vae data, e.g., Data/MNIST_vae.npz must exist.
    if metric[0:3]=='vae' or metric[0:3]=='aet':
        dataFile = "Data/"+dataset+"_"+metric+".npz"
    else:
        dataFile = "Data/"+dataset+"_raw.npz"

    #Try to Load data
    try:
        M = np.load(dataFile,allow_pickle=True)
    except:
        print('Cannot find '+dataFile+'.')
        sys.exit(2)

    data = M['data']

    #Apply transformations (just scatter now, but others could be included)
    if metric == 'scatter' or metric == 'scatter_pca':
        if metric == 'scatter_pca' and scatter_pca_dims <= 300: 
            #Changed to Data
            filePath = "Data/" + dataset + "_" + "scatter_pca" + ".npz"
            try:
                PCAfile = np.load(filePath)
                savedPCA = PCAfile['savedPCA']
            except:
                print("File not found: " + filePath)
                print("Recomputing " + filePath) 
                m = int(np.sqrt(data.shape[1]))  # number of pixels across image (assuming square)
                Y = gl.scattering_transform(data, m, m)
                print("Computing PCA...")
                pca = PCA(n_components=300)
                savedPCA = pca.fit_transform(Y)
                np.savez_compressed(filePath, savedPCA=savedPCA)
            pca = PCA(n_components=scatter_pca_dims)
            data = pca.fit_transform(savedPCA)
        else:
            print("Computing scattering transform...")
            m = int(np.sqrt(data.shape[1]))  
            data = gl.scattering_transform(data, m, m)

    #Perform kNN search
    if knn_method == 'annoy':
        if metric in ['angular', 'manhattan', 'hamming', 'dot']:
            similarity = metric
        else:
            similarity = 'euclidean'
        
        if metric[0:3] == 'aet':
            similarity = 'angular'

        # Similarity can be "angular", "euclidean", "manhattan", "hamming", or "dot".
        I,J,D = gl.knnsearch_annoy(data,k, similarity) 
    elif knn_method == 'exact':
        I,J,D = gl.knnsearch(data,k)
    else:
        print('Invalid kNN method.')
        return

    #Save kNN results to file
    np.savez_compressed(outfile,I=I,J=J,D=D)