def ports_setup(self): port_type = PortsSpecSchema.port_type input_ports = { 'points_df_in': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } output_ports = { 'distance_df': { port_type: [cudf.DataFrame, dask_cudf.DataFrame] }, 'distance_abs_df': { PortsSpecSchema.port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } input_connections = self.get_connected_inports() if 'points_df_in' in input_connections: types = input_connections['points_df_in'] # connected, use the types passed in from parent return NodePorts(inports={'points_df_in': {port_type: types}}, outports={'distance_df': {port_type: types}, 'distance_abs_df': {port_type: types}, }) else: return NodePorts(inports=input_ports, outports=output_ports)
def ports_setup(self): port_type = PortsSpecSchema.port_type if self.instance is not None: inports = self.instance.input_ports outports = self.instance.output_ports else: try: p_inports = self.instanceClass.input_ports p_outports = self.instanceClass.output_ports feeder = FeedProperty(self.conf) inports = p_inports.fget(feeder) outports = p_outports.fget(feeder) except Exception: inports = None outports = None o_inports = {} o_outports = {} if inports is not None: for k in inports.keys(): o_inports[k] = {port_type: NmTensor} if outports is not None: for k in outports.keys(): o_outports[k] = {port_type: NmTensor} if issubclass(self.instanceClass, TrainableNM): # added the port for tying the weights o_inports[self.INPUT_NM] = {port_type: TrainableNM} o_outports[self.OUTPUT_NM] = {port_type: TrainableNM} elif issubclass(self.instanceClass, LossNM): o_outports[self.OUTPUT_NM] = {port_type: LossNM} elif issubclass(self.instanceClass, DataLayerNM): o_outports[self.OUTPUT_NM] = {port_type: DataLayerNM} return NodePorts(inports=o_inports, outports=o_outports)
def ports_setup(self): input_ports = {} output_ports = { 'points_df_out': { PortsSpecSchema.port_type: pd.DataFrame } } return NodePorts(inports=input_ports, outports=output_ports)
def ports_setup(self): port_type = PortsSpecSchema.port_type dy = PortsSpecSchema.dynamic o_inports = {} o_inports[self.INPUT_PORT_NAME] = {port_type: str} o_inports['input_tensor'] = {port_type: NmTensor, dy: True} # if hasattr(self, 'inputs'): # for inp in self.inputs: # if inp['to_port'] in (self.INPUT_PORT_NAME,): # continue # # TODO: Move TaskGrah rewire logic here instead of in # # chartEngine.tsx ChartEngine._fixNeMoPorts # o_inports[inp['from_node'].uid+'@'+inp['from_port']] = { # port_type: NmTensor} o_outports = {} o_outports[self.OUTPUT_PORT_NAME] = {port_type: list} return NodePorts(inports=o_inports, outports=o_outports)
def ports_setup(self): input_ports = { 'df1': { PortsSpecSchema.port_type: [cudf.DataFrame, dask_cudf.DataFrame] }, 'df2': { PortsSpecSchema.port_type: [cudf.DataFrame, dask_cudf.DataFrame] } } output_ports = {'max_diff': {PortsSpecSchema.port_type: float}} connections = self.get_connected_inports() for key in input_ports: if key in connections: # connected types = connections[key] input_ports[key].update({PortsSpecSchema.port_type: types}) return NodePorts(inports=input_ports, outports=output_ports)
def ports_setup(self): ptype = self.conf.get('port_type', list) inports = {'inlist': {PortsSpecSchema.port_type: ptype}} outports = {'sum': {PortsSpecSchema.port_type: float}} return NodePorts(inports=inports, outports=outports)
def ports_setup(self): ptype = self.conf.get('port_type', list) output_ports = {'numlist': {PortsSpecSchema.port_type: ptype}} return NodePorts(outports=output_ports)