def test_2_busswitch(self): agent = TopologyGreedy(self.env.helper_action_player) i, cum_reward = self._aux_test_agent(agent, i_max=10) assert i == 11, "The powerflow diverged before step 10 for greedy agent" assert np.abs( cum_reward - 12075.38800 ) <= self.tol_one, "The reward has not been properly computed"
def test_2_busswitch(self): agent = TopologyGreedy(self.env.helper_action_player) with warnings.catch_warnings(): warnings.filterwarnings("error") i, cum_reward = self._aux_test_agent(agent, i_max=10) assert i == 11, "The powerflow diverged before step 10 for greedy agent" expected_reward = dt_float(12075.389) assert np.abs(cum_reward - expected_reward) <= self.tol_one, "The reward has not been properly computed"
def main(max_ts, name): backend = LightSimBackend() param = Parameters() param.init_from_dict({"NO_OVERFLOW_DISCONNECTION": True}) env_klu = make(name, backend=backend, param=param, gamerules_class=AlwaysLegal, test=True) agent = TopologyGreedy(action_space=env_klu.action_space) nb_ts_klu, time_klu, aor_klu, gen_p_klu, gen_q_klu = run_env( env_klu, max_ts, agent) env_pp = make(name, param=param, gamerules_class=AlwaysLegal, test=True) agent = TopologyGreedy(action_space=env_pp.action_space) nb_ts_pp, time_pp, aor_pp, gen_p_pp, gen_q_pp = run_env( env_pp, max_ts, agent) print_res(env_klu, env_pp, nb_ts_klu, nb_ts_pp, time_klu, time_pp, aor_klu, aor_pp, gen_p_klu, gen_p_pp, gen_q_klu, gen_q_pp)
def test_2_busswitch(self): agent = TopologyGreedy(self.env.action_space) with warnings.catch_warnings(): warnings.filterwarnings("error") i, cum_reward, all_acts = self._aux_test_agent(agent, i_max=10) assert i == 11, "The powerflow diverged before step 10 for greedy agent" expected_reward = dt_float(12075.389) # i have more actions now, so this is not correct (though it should be.. # yet a proof that https://github.com/rte-france/Grid2Op/issues/86 is grounded expected_reward = dt_float(12277.632) # 12076.356 # 12076.191 expected_reward = dt_float(12076.356) assert np.abs(cum_reward - expected_reward) <= self.tol_one, "The reward has not been properly computed"
print("do-nothing") with make(dataset, param=params, backend=backend) as env: agent = DoNothingAgent(env.action_space) runner = Runner(**env.get_params_for_runner(), agentClass=None, agentInstance=agent) runner.run( nb_episode=2, path_save="grid2viz/data/agents/do-nothing-baseline", nb_process=1, max_iter=2000, pbar=True, ) env.close() print("greedy") with make(dataset, param=params, backend=backend) as env: agent = TopologyGreedy(env.action_space) runner = Runner(**env.get_params_for_runner(), agentClass=None, agentInstance=agent) runner.run( nb_episode=2, path_save="grid2viz/data/agents/greedy-baseline", nb_process=1, max_iter=2000, pbar=True, ) env.close()